实时数据开发flink面试题目

本文深入探讨了Flink的TaskManager内存模型,包括Heap、Native Memory、Managed Memory和Network Memory等组成部分,以及如何避免和管理背压。同时,提到了Flink SQL的解析过程,并讨论了设计大数据平台的关键框架和组件。此外,还触及了ClickHouse的MergTree类型。
摘要由CSDN通过智能技术生成

1、flink中taskmanager内存模型?

Task Manager的内存模型,分为5大部分:堆内存、堆外内存、直接内存、MetaSpace内存以及JVM Overhead内存。

在这里插入图片描述
如上图所示:
例如:taskmanager.memory.process.size = 4096m 那么总内存就是4GB

  1. Heap

    使用Java代码new出来的对象说占用的内存都是存放在Heap(堆)内存中,它由JVM垃圾收集器维护。
    Native Memory/Off-Heap
    NativeMemory或者是Off-heap是在进程地址空间内分配的内存,这部分内存不再堆内。JVM的GC是不会自动回收这个部分的内存的。
    Direct Memory
    Direct Memory是off-heap Big Memory的实现,能够在内存中序列化大批量的Java对象,并且不影响JVM GC性能。
    Total Process Memory和Total Flink Memory。
    Total Process Memory表示整个Task Manager的进程内存,所有这张图的内存加在一块就是Total Process Memory。
    而Total Flink Memory表示Task Executor消耗的所有内存,也就是除了JVM Metaspace和JVM Overhead其他的加在一起就是Total Flink Memory。Task Executor是专门负责

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值