找到中间一个数然后枚举它个数值。
向左每次少于N个距离,向右每次多M的距离
然后向左遍历,再向右遍历
找出全部。
还有就是晚上看的思路:
思路 从网上拿的。。。
先输入N表示有N头牛,接下来的N个数是各个牛所在的位置。如果一头牛对另一头牛Moo,那么Moo数就是1号牛所在位置i与2号牛所在位置j的差值,又因为1号牛Moo过去,所以2号牛也要Moo回来,于是Moo数就变为2倍了。
1号牛要对剩余所有(N-1)头牛都Moo,如果我们将牛按顺序排好,每头牛i只对它身后的(N-i)头牛Moo,意思是,我们只考虑某头牛Moo出去的,而不考虑别的牛对它Moo回来的,那么它也不对在它前面的牛Moo,那么这就是一个简单的数学问题,每头牛i只对身后的(N-i)头牛Moo。因为所有牛还要Moo回去,所以最后结果乘2就可以了。
这就想到可以用循环来实现,对每头牛i,它与它后面(N-i)头牛j的距离(i-j),所有距离求和,就是Moo出去的次数,再乘2,就又加上了Moo回来的次数。这样答案就出来了。
#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
int main()
{
int N,i;
long long sum;
long long a[10000];
while(~scanf("%d",&N)){
for(int i=0;i<N;i++){
scanf("%lld",&a[i]);
}
sum=0;
sort(a,a+N);
for(int i=1;i<N;i++){
sum+=(a[i]-a[i-1])*i*(N-i);
}
printf("%lld\n",sum*2);
}
return 0;
}