ubuntu16.04 anaconda 安装tensorflow(cpu版本)

本文介绍了如何在Ubuntu系统上使用Anaconda创建环境并安装TensorFlow 1.8.0,详细步骤包括解决pip升级问题、创建conda环境、激活环境、指定版本安装TensorFlow以及测试安装成功。遇到pip版本与Python版本不匹配的问题,通过特定命令解决,并提供下载TensorFlow特定版本的链接和解释文件名含义。
摘要由CSDN通过智能技术生成

注意:

Tensorflow刚刚开放了2.0。但是,现有的学习资料很多依旧是1,0版本的。目前使用最新版本的Anaconda直接安装,安装到的tensorflow是2.0或者以上的版本,tensorflow1.0 和2.0有很大的区别,函数的名称就有很多改变,有兴趣的小伙伴可以自行百度。以下安装tensorflow2.0版本。

引言

本来想直接基于系统自带的python安装tf的,但是遇到了问题,遇到的问题如下所尝试,只是记录一下,查了一会没解决就想着用anaconda应该会容易一些的。
在这里插入图片描述
这个问题通过如下方法解决了:

curl -fsSL -o- https://bootstrap.pypa.io/pip/3.5/get-pip.py | python3.5

原因:pip3升级后报错:sys.stderr.write(f"ERROR: {exc}"),pip3版本不匹配Python3版本

但是解决之后又出现问题:
在这里插入图片描述
这个问题没在解决。

anaconda安装tensorflow(cpu)

1 安装Anaconda

默认已经安装好anaconda,
参考:https://blog.csdn.net/u014570569/article/details/82697415

2 创建TensorFlow环境
conda create -n tf python=3.6 
#注意要指明Python的版本,tf是用户自己定义的环境名字

创建完成可以通过命令自己查看

conda env list
3 激活TensorFlow环境
source activate tf
4、安装TensorFlow

不推荐使用conda install tensorflow 来安装,容易发生意想不到的错误

# 不推荐该方法
conda install tensorflow
# 为了避免造成Pycharm提示ImportError:DLL load failed建议使用pip进行TensorFlow的安装
pip install tensorflow 

默认安装的是2.0的版本,我安装完是2.6.0
在这里插入图片描述
这里我们需要指定安装版本!!!

我们用pip来安装Tensorflow 1.9,当然可以安装其他版本,这里安装1.8。首先去下载1.8到本地文件夹。
下载地址(使用清华的源):https://mirrors.tuna.tsinghua.edu.cn/tensorflow/linux/cpu/
在这里插入图片描述
关于下载文件tensorflow-1.8.0rc1-cp36-cp36m-linux_x86_64中的版本版本说明:

  • 1.8.0 表示tensorflow版本是1.8
  • cp36代表python3.6
  • linux_x86_64表示适用于Linux 64位的系统版本

随后执行命令:

pip install URL # 这里的URL是指tensorflow-1.8.0rc1-cp36-cp36m-linux_x86_64文件本地存储的位置

在这里插入图片描述
其实 windows安装的过程和ubuntu也类似,有需要的可以尝试一下。

怎么查看tensorflow版本
在这里插入图片描述

5、测试TensorFlow是否安装成功
python #进入Python
#测试代码
import tensorflow as tf #主要看这句引入包的语句会不会报错
 
hello = tf.constant('hello world!')
sess = tf.Session()
print(sess.run(hello))

在这里插入图片描述
输出这样的图片就是成功了!!

完结撒花!!!!!

参考文章:https://ld246.com/article/1537434368513

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值