AI开发中的Token:从基础到优化全解析


在这里插入图片描述

一、Token 的含义详解

在 AI 应用开发中,尤其是在基于大语言模型(LLM)的系统中,token 是模型处理和生成文本的基本单位。它可以是一个单词、一个标点符号、一个子词(subword),甚至是一个特殊符号。

1. 什么是 Token?

  • 模型不会直接理解人类语言,而是将文本切分成更小的单元进行处理。
  • 这些单元就是 token,是模型输入输出的最小语义/语法单位。

2. Token 的来源:分词器(Tokenizer)

  • 每个大语言模型都依赖一个特定的 分词器(Tokenizer) 来将文本转换为 token。
  • 常见的分词方式包括:
    • Word-based(基于单词)
    • Character-based(基于字符)
    • Subword-based(基于子词),如 BPE(Byte-Pair Encoding)、WordPiece 等。

例如:

输入文本:"Hello, world!"
分词结果(token列表):["Hello", ",", " world", "!"]

二、Token 在 AI 应用中的作用

作用分类描述
输入处理将用户输入文本编码成模型可理解的数字序列(token IDs)。
输出生成模型根据内部计算逐个生成 token,最终组合成完整回复。
长度限制控制模型有最大上下文长度限制(如 4096 tokens),影响输入输出内容的长度。
性能与成本评估API 调用通常按 token 数量计费(如 OpenAI GPT 系列)。

三、Token 相关的关键概念

概念名称解释
Tokenization将原始文本转化为 token 序列的过程。
Vocabulary(词表)所有支持的 token 集合,每个模型都有自己的词表大小(如 GPT-3 词汇量约 50k)。
Context Length模型一次能处理的最大 token 数量,决定了对话历史或文档长度上限。
Input Tokens用户输入所占用的 token 数量。
Output Tokens模型生成回复所占用的 token 数量。
Prompt Tokens输入提示词部分的 token 总数。
Completion Tokens模型生成的内容所占 token 数量。

四、不同模型的 Token 处理差异

模型名称分词器类型词表大小最大上下文长度示例 token 切分说明
GPT-3 / GPT-3.5BPE~50k4096子词切分,如 “playing” → [“play”, “ing”]
GPT-4BPE~100k8192 或 32768更精细的子词划分,支持更多语言
Llama / Llama2SentencePiece~32k4096支持中文等非空格语言,中文多为单字或词组
Qwen(通义千问)自研 tokenizer~150k可达 32768中英文混合优化,中文以词语为主
BERTWordPiece~30k512主要用于英文任务,中文需额外适配

五、Token 计算与费用关系(以 OpenAI 为例)

模型名输入 token 单价(USD)输出 token 单价(USD)典型应用场景
gpt-3.5-turbo$0.0005 / 1K tokens$0.0015 / 1K tokens聊天、客服、基础写作
gpt-4$0.03 / 1K tokens$0.06 / 1K tokens高级推理、复杂任务
gpt-4-32k$0.06 / 1K tokens$0.12 / 1K tokens长文档处理、知识问答
gpt-4o$0.005 / 1K tokens$0.015 / 1K tokens多模态交互、语音聊天

六、Token 在实际应用中的优化建议

优化方向实施方法
减少输入 token 数量精简提示词内容,去除冗余信息,使用更简洁表达。
压缩上下文长度控制对话历史长度,采用摘要机制保留关键信息。
合理选择模型根据任务复杂度选择合适的模型,避免“杀鸡用牛刀”。
缓存常用 token对于固定模板或高频提示词进行缓存复用。
本地化 token 统计在客户端或服务端预统计 token 数量,提前判断是否超限。

七、总结表格

项目内容描述
Token 定义模型处理文本的最小单位,由分词器将文本切分为 token 序列
主要作用输入编码、输出生成、长度控制、成本计量
常见分词器BPE、WordPiece、SentencePiece 等
典型模型 token 差异GPT-3/BERT 词表较小,Llama/Qwen 支持更大词表和中文
API 成本参考OpenAI 按 token 收费,gpt-3.5-turbo 成本最低,gpt-4 成本较高
优化策略减少输入、控制上下文、合理选模型、缓存、本地统计

八、附注:如何查看 Token 数量?

  • 使用 HuggingFace 的 transformers 库:

    from transformers import AutoTokenizer
    tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
    tokens = tokenizer.tokenize("Hello, world!")
    print(len(tokens))
    
  • 使用 OpenAI 提供的 tiktoken 库进行快速 token 统计。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

爱的叹息

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值