【LeetCode】207. Course Schedule

207. Course Schedule

Description:
There are a total of n courses you have to take, labeled from 0 to n-1.
Some courses may have prerequisites, for example to take course 0 you have to first take course 1, which is expressed as a pair: [0,1]
Given the total number of courses and a list of prerequisite pairs, is it possible for you to finish all courses?
Difficulty:Medium
Example:

Input: 2, [[1,0],[0,1]]
Output: false
Explanation: There are a total of 2 courses to take. 
             To take course 1 you should have finished course 0, and to take course 0 you should
             also have finished course 1. So it is impossible.

方法1:拓扑排序,深度搜索

  • Time complexity : O ( ) O\left (\right ) O()
  • Space complexity : O ( ) O\left ( \right ) O()
    思路:
    建图,以及配套的出度,找出度为0的节点,没有之间返回false,有的话置为-1,并将其上游的出度都减1,再次寻找出度为0的节点,如果到最后都没有返回false,此时返回true。
class Solution {
public:
    bool canFinish(int numCourses, vector<pair<int, int>>& prerequisites) {
        vector<unordered_set<int>> graph(numCourses);
        vector<int> degrees(numCourses, 0);
        for(auto p : prerequisites){
            graph[p.second].insert(p.first);
            degrees[p.first]++;
        }
        for(int i = 0; i < numCourses; i++){
            int j = 0;
            for(; j < numCourses; j++)
                if(!degrees[j]) break;
            degrees[j] = -1;        
            if(j == numCourses) return false;
            for(auto n : graph[j])
                degrees[n]--;
        }
        return true;
    }
};

方法2:拓扑排序,队列

  • Time complexity : O ( ) O\left (\right ) O()
  • Space complexity : O ( ) O\left ( \right ) O()
    思路:
    建图,以及配套的出度,找出度为0的节点,将其push到队列中,如果没有就返回false,将其上游的出度减1,如果上游的出度为0再将其push进去,并将此节点pop出去。
class Solution {
public:
    bool canFinish(int numCourses, vector<pair<int, int>>& prerequisites) {
        vector<unordered_set<int>> graph(numCourses);
        vector<int> degrees(numCourses, 0);
        for(auto p : prerequisites){
            graph[p.second].insert(p.first);
            degrees[p.first]++;
        }
        queue<int> Q;
        for(int i = 0;i < numCourses;i++)
            if(degrees[i] == 0)
                Q.push(i);
        int counter = 0;
        while(!Q.empty())
        {
            int u = Q.front();
            Q.pop();
            ++counter;
            for(auto v : graph[u])
            {
                if(--degrees[v] == 0)
                    Q.push(v);
            }
        }
        return counter == numCourses;
    }
};
©️2020 CSDN 皮肤主题: 编程工作室 设计师:CSDN官方博客 返回首页