69. Sqrt(x)
Description:
Implement int sqrt(int x).
Difficulty:Easy
Example:
Input: 8
Output: 2
Explanation: The square root of 8 is 2.82842..., and since
the decimal part is truncated, 2 is returned.
方法1:二分法
- Time complexity : O ( l o g n ) O\left (logn \right ) O(logn)
- Space complexity :
O
(
1
)
O\left (1 \right )
O(1)
思路:
二分法,尽量用除法代替乘法,因为乘出来可能数太大会溢出,但是除法会比乘法慢一些。
class Solution {
public:
int mySqrt(int x) {
if(x == 0) return 0;
int l = 1, r = x, res = 0;
while(l <= r){
int mid = (r+l)/2;
if(mid <= x / mid){ // 这个地方如果用mid * mid <= x就会溢出。
l = mid + 1;
res = mid;
}
else{
r = mid - 1;
}
}
return res;
}
};
方法2:牛顿法
- Time complexity :
O
(
l
o
g
n
)
O\left (logn \right )
O(logn)
?不确定,速度比二分快但是收敛慢
- Space complexity :
O
(
1
)
O\left (1 \right )
O(1)
思路:
res_i+1 = ( res_i + res_i / x ) / 2
class Solution {
public:
int mySqrt(int x) {
if(x == 0) return 0;
double res = 1, last = 0;
while(abs(res - last) > 1e-6){
last = res;
res = (res + x / res) / 2;
}
return int(res);
}
};
升级版题目: float开平方
方法1:二分法
class Solution {
public:
{
float low,up,mid,last;
low=0,up=(n<1?1:n);
mid=(low+up)/2;
do
{
if(mid*mid>n)
up=mid;
else
low=mid;
last=mid;
mid=(up+low)/2;
}while(fabsf(mid-last) > eps);
return mid;
}
};
方法2:牛顿法
class Solution {
public:
float mySqrt(int x) {
if(x == 0) return 0;
double res = 1, last = 0;
while(abs(res - last) > 1e-6){
last = res;
res = (res + x / res) / 2;
}
return res;
}
};