动手学习深度学习(Pytorch版)Task 2:语言模型

语言模型

一段自然语言文本可以看作是一个离散时间序列,给定一个长度为 T T T的词的序列 w 1 , w 2 , … , w T w_1, w_2, \ldots, w_T w1,w2,,wT,语言模型的目标就是评估该序列是否合理,即计算该序列的概率:

P ( w 1 , w 2 , … , w T ) . P(w_1, w_2, \ldots, w_T). P(w1,w2,,wT).

下面将介绍基于统计的语言模型,主要是 n n n元语法( n n n-gram)。

语言模型

假设序列 w 1 , w 2 , … , w T w_1, w_2, \ldots, w_T w1,w2,,wT中的每个词是依次生成的,我们有

P ( w 1 , w 2 , … , w T ) = ∏ t = 1 T P ( w t ∣ w 1 , … , w t − 1 ) = P ( w 1 ) P ( w 2 ∣ w 1 ) ⋯ P ( w T ∣ w 1 w 2 ⋯ w T − 1 ) P(w_1, w_2, \ldots, w_T)= \prod_{t=1}^T P(w_t \mid w_1, \ldots, w_{t-1})\\= P(w_1)P(w_2 \mid w_1) \cdots P(w_T \mid w_1w_2\cdots w_{T-1}) P(w1,w2,,wT)=t=1TP(wtw1,,wt1)=P(w1)P(w2w1)P(wTw1w2wT1)

例如,一段含有4个词的文本序列的概率

P ( w 1 , w 2 , w 3 , w 4 ) = P ( w 1 ) P ( w 2 ∣ w 1 ) P ( w 3 ∣ w 1 , w 2 ) P ( w 4 ∣ w 1 , w 2 , w 3 ) . P(w_1, w_2, w_3, w_4) = P(w_1) P(w_2 \mid w_1) P(w_3 \mid w_1, w_2) P(w_4 \mid w_1, w_2, w_3). P(w1,w2,w3,w4)=P(w1)P(w2w1)P(w3w1,w2)P(w4w1,w2,w3).

语言模型的参数就是词的概率以及给定前几个词情况下的条件概率。设训练数据集为一个大型文本语料库,如维基百科的所有条目,词的概率可以通过该词在训练数据集中的相对词频来计算,例如, w 1 w_1 w1的概率可以计算为:

P ( w 1 ) = n ( w 1 ) n P(w_1) = \frac{n(w_1)}{n} P(w1)=nn(w1)

其中 n ( w 1 ) n(w_1) n(w1)为语料库中以 w 1 w_1 w1作为第一个词的文本的数量, n n n为语料库中文本的总数量。

类似的,给定 w 1 w_1 w1情况下, w 2 w_2 w2的条件概率可以计算为:

P ( w 2 ∣ w 1 ) = n ( w 1 , w 2 ) n ( w 1 ) P(w_2 \mid w_1) = \frac{n(w_1, w_2)}{n(w_1)} P(w2w1)=n(w1)n(w1,w2)

其中 n ( w 1 , w 2 ) n(w_1, w_2) n(w1,w2)为语料库中以 w 1 w_1 w1作为第一个词, w 2 w_2 w2作为第二个词的文本的数量。

n元语法

序列长度增加,计算和存储多个词共同出现的概率的复杂度会呈指数级增加。 n n n元语法通过马尔可夫假设简化模型,马尔科夫假设是指一个词的出现只与前面 n n n个词相关,即 n n n阶马尔可夫链(Markov chain of order n n n),如果 n = 1 n=1 n=1,那么有 P ( w 3 ∣ w 1 , w 2 ) = P ( w 3 ∣ w 2 ) P(w_3 \mid w_1, w_2) = P(w_3 \mid w_2) P(w3w1,w2)=P(w3w2)。基于 n − 1 n-1 n1阶马尔可夫链,我们可以将语言模型改写为

P ( w 1 , w 2 , … , w T ) = ∏ t = 1 T P ( w t ∣ w t − ( n − 1 ) , … , w t − 1 ) . P(w_1, w_2, \ldots, w_T) = \prod_{t=1}^T P(w_t \mid w_{t-(n-1)}, \ldots, w_{t-1}) . P(w1,w2,,wT)=t=1TP(wtwt(n1),,wt1).

以上也叫 n n n元语法( n n n-grams),它是基于 n − 1 n - 1 n1阶马尔可夫链的概率语言模型。例如,当 n = 2 n=2 n=2时,含有4个词的文本序列的概率就可以改写为:

P ( w 1 , w 2 , w 3 , w 4 ) = P ( w 1 ) P ( w 2 ∣ w 1 ) P ( w 3 ∣ w 1 , w 2 ) P ( w 4 ∣ w 1 , w 2 , w 3 ) = P ( w 1 ) P ( w 2 ∣ w 1 ) P ( w 3 ∣ w 2 ) P ( w 4 ∣ w 3 ) P(w_1, w_2, w_3, w_4)= P(w_1) P(w_2 \mid w_1) P(w_3 \mid w_1, w_2) P(w_4 \mid w_1, w_2, w_3)\\= P(w_1) P(w_2 \mid w_1) P(w_3 \mid w_2) P(w_4 \mid w_3) P(w1,w2,w3,w4)=P(w1)P(w2w1)P(w3w1,w2)P(w4w1,w2,w3)=P(w1)P(w2w1)P(w3w2)P(w4w3)

n n n分别为1、2和3时,我们将其分别称作一元语法(unigram)、二元语法(bigram)和三元语法(trigram)。例如,长度为4的序列 w 1 , w 2 , w 3 , w 4 w_1, w_2, w_3, w_4 w1,w2,w3,w4在一元语法、二元语法和三元语法中的概率分别为

P ( w 1 , w 2 , w 3 , w 4 ) = P ( w 1 ) P ( w 2 ) P ( w 3 ) P ( w 4 ) , P ( w 1 , w 2 , w 3 , w 4 ) = P ( w 1 ) P ( w 2 ∣ w 1 ) P ( w 3 ∣ w 2 ) P ( w 4 ∣ w 3 ) , P ( w 1 , w 2 , w 3 , w 4 ) = P ( w 1 ) P ( w 2 ∣ w 1 ) P ( w 3 ∣ w 1 , w 2 ) P ( w 4 ∣ w 2 , w 3 ) . P(w_1, w_2, w_3, w_4) = P(w_1) P(w_2) P(w_3) P(w_4) ,\\ P(w_1, w_2, w_3, w_4) = P(w_1) P(w_2 \mid w_1) P(w_3 \mid w_2) P(w_4 \mid w_3) ,\\ P(w_1, w_2, w_3, w_4) = P(w_1) P(w_2 \mid w_1) P(w_3 \mid w_1, w_2) P(w_4 \mid w_2, w_3) . P(w1,w2,w3,w4)=P(w1)P(w2)P(w3)P(w4),P(w1,w2,w3,w4)=P(w1)P(w2w1)P(w3w2)P(w4w3),P(w1,w2,w3,w4)=P(w1)P(w2w1)P(w3w1,w2)P(w4w2,w3).

n n n较小时, n n n元语法往往并不准确。例如,在一元语法中,由三个词组成的句子“你走先”和“你先走”的概率是一样的。然而,当 n n n较大时, n n n元语法需要计算并存储大量的词频和多词相邻频率。

思考: n n n元语法可能有哪些缺陷?

  1. 参数空间过大
  2. 数据稀疏

语言模型数据集

读取数据集

with open('jaychou_lyrics.txt',encoding='utf-8') as f:#在本地windows下默认gbk编码,而我们通常用的是utf8,会报错,添加'encoding='utf-8'
    corpus_chars=f.read()#读入全部内容
print(len(corpus_chars))
print(corpus_chars[:40])
corpus_chars=corpus_chars.replace('\n',' ').replace('\r',' ')#用空格替换字符串中的换行与回车
corpus_chars=corpus_chars[:10000]#取前10000个单词
63282
想要有直升机
想要和你飞到宇宙去
想要和你融化在一起
融化在宇宙里
我每天每天每

建立字符索引

idx_to_char=list(set(corpus_chars))#先set()化为集合去重,再list()化为列表,建立索引->字符
char_to_idx={char:i for i,char in enumerate(idx_to_char)}#字符到索引的映射
vocab_size=len(char_to_idx)
print(vocab_size)

corpus_indices=[char_to_idx[char] for char in corpus_chars]# 将每个字符转化为索引,得到一个索引的序列
sample=corpus_indices[:20]
print('chars:',''.join([idx_to_char[idx] for idx in sample]))#列表化字符串
print('indices:',sample)
1027
chars: 想要有直升机 想要和你飞到宇宙去 想要和
indices: [130, 647, 885, 229, 694, 396, 160, 130, 647, 957, 672, 163, 909, 467, 142, 140, 160, 130, 647, 957]

定义函数load_data_jay_lyrics,放在d2l_pytorch中以后直接调用。

def load_data_jay_lyrics():
    with open('jaychou_lyrics.txt') as f:
        corpus_chars=f.read()
    corpus_chars = corpus_chars.replace('\n', ' ').replace('\r', ' ')
    corpus_chars = corpus_chars[0:10000]
    idx_to_char = list(set(corpus_chars))
    char_to_idx = dict([(char, i) for i, char in enumerate(idx_to_char)])
    vocab_size = len(char_to_idx)
    corpus_indices = [char_to_idx[char] for char in corpus_chars]
    return corpus_indices, char_to_idx, idx_to_char, vocab_size

时序数据的采样

在训练中我们需要每次随机读取小批量样本和标签。与之前章节的实验数据不同的是,时序数据的一个样本通常包含连续的字符。假设时间步数为5,样本序列为5个字符,即“想”“要”“有”“直”“升”。该样本的标签序列为这些字符分别在训练集中的下一个字符,即“要”“有”“直”“升”“机”,即 X X X=“想要有直升”, Y Y Y=“要有直升机”。

现在我们考虑序列“想要有直升机,想要和你飞到宇宙去”,如果时间步数为5,有以下可能的样本和标签:

  • X X X:“想要有直升”, Y Y Y:“要有直升机”
  • X X X:“要有直升机”, Y Y Y:“有直升机,”
  • X X X:“有直升机,”, Y Y Y:“直升机,想”
  • X X X:“要和你飞到”, Y Y Y:“和你飞到宇”
  • X X X:“和你飞到宇”, Y Y Y:“你飞到宇宙”
  • X X X:“你飞到宇宙”, Y Y Y:“飞到宇宙去”

可以看到,如果序列的长度为 T T T,时间步数为 n n n,那么一共有 T − n T-n Tn个合法的样本,但是这些样本有大量的重合,我们通常采用更加高效的采样方式。我们有两种方式对时序数据进行采样,分别是随机采样和相邻采样。

随机采样

下面的代码每次从数据里随机采样一个小批量。其中批量大小batch_size是每个小批量的样本数,num_steps是每个样本所包含的时间步数。
在随机采样中,每个样本是原始序列上任意截取的一段序列,相邻的两个随机小批量在原始序列上的位置不一定相毗邻。

import torch as t
import random
def data_iter_random(corpus_indices,batch_size,num_steps,device=None):#device指数据放回的位置
    #减1是因为对于长度为n的序列,X最多只包含其中的n-1个字符,因为第n个字符必须包含在标签Y中
    num_examples=(len(corpus_indices)-1)//num_steps#下取整,得到不重叠情况下的样本个数
    example_indices=[i*num_steps for i in range(num_examples)]# 每个样本的第一个字符在corpus_indices中的下标
    random.shuffle(example_indices)#打乱列表,随机性由此产生
    
    def _data(i):
        #返回从i开始的长为num_steps的序列
        return corpus_indices[i:i+num_steps]
    if device is None:
        device=t.device('cuda' if t.cuda.is_available() else 'cpu')
    
    for i in range(0,num_examples,batch_size):
        #每次选出batch_size个随机样本
        batch_indices=example_indices[i:i+batch_size] # 当前batch的各个样本的首字符的下标
        X=[_data(j) for j in batch_indices]
        Y=[_data(j+1) for j in batch_indices]
        yield t.tensor(X,device=device),t.tensor(Y,device=device)#生成器

测试一下这个函数,我们输入从0到29的连续整数作为一个人工序列,设批量大小和时间步数分别为2和6,打印随机采样每次读取的小批量样本的输入X和标签Y

my_seq=list(range(30))
for X,Y in data_iter_random(my_seq,batch_size=2,num_steps=6):
    print('X:',X,'\nY:',Y,'\n')
X: tensor([[18, 19, 20, 21, 22, 23],
        [ 6,  7,  8,  9, 10, 11]]) 
Y: tensor([[19, 20, 21, 22, 23, 24],
        [ 7,  8,  9, 10, 11, 12]]) 

X: tensor([[ 0,  1,  2,  3,  4,  5],
        [12, 13, 14, 15, 16, 17]]) 
Y: tensor([[ 1,  2,  3,  4,  5,  6],
        [13, 14, 15, 16, 17, 18]]) 

相邻采样

在相邻采样中,相邻的两个随机小批量在原始序列上的位置相毗邻。

def data_iter_consecutive(corpus_indices,batch_size,num_steps,device=None):
    if device is None:
        device = t.device('cuda' if t.cuda.is_available() else 'cpu')
    corpus_len=len(corpus_indices)//batch_size*batch_size#保留下来的序列长度,能被batch_sizr整除
    corpus_indices=corpus_indices[:corpus_len]#仅保留前corpus_len个字符
    indices=t.tensor(corpus_indices,device=device)
    indices=indices.view(batch_size,-1)## resize成(batch_size, corpus_len/batch_size)
    batch_num=(indices.shape[1]-1)//num_steps#作用等同于随机取样的num_examples=(len(corpus_indices)-1)//num_steps
    for i in range(batch_num):
        i=i*num_steps#样本首字符下标
        X=indices[:,i:i+num_steps]
        Y=indices[:,i+1:i+num_steps+1]
        yield X,Y

同样的设置下,打印相邻采样每次读取的小批量样本的输入X和标签Y。相邻的两个小批量在原始序列上的位置相毗邻。

for X,Y in data_iter_consecutive(my_seq,batch_size=2,num_steps=6):
    print('X: ',X,'\nY: ',Y,'\n')
X:  tensor([[ 0,  1,  2,  3,  4,  5],
        [15, 16, 17, 18, 19, 20]]) 
Y:  tensor([[ 1,  2,  3,  4,  5,  6],
        [16, 17, 18, 19, 20, 21]]) 

X:  tensor([[ 6,  7,  8,  9, 10, 11],
        [21, 22, 23, 24, 25, 26]]) 
Y:  tensor([[ 7,  8,  9, 10, 11, 12],
        [22, 23, 24, 25, 26, 27]]) 
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值