初等数论:同余

同余

基本概念

同余指两个数 a a a b b b 除以另一个数 m m m 后,余数相同,则称 a a a b b b 同余,数学公式为:
a ≡ b ( m o d m ) a \equiv b \pmod m ab(modm)
举个例子, 10 10 10 除以 3 3 3 ,商 3 3 3 1 1 1 7 7 7 除以 3 3 3 ,商 2 2 2 1 1 1,公式如下:
10 ÷ 3 = 3 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 10 \div 3 = 3 ······ 1 10÷3=3⋅⋅⋅⋅⋅⋅1

7 ÷ 3 = 2 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 7 \div 3 = 2 ······ 1 7÷3=2⋅⋅⋅⋅⋅⋅1

以上两个公式可以统称为 10 10 10 7 7 7 3 3 3 同余,同余等式如下:
10 ≡ 7 ( m o d 3 ) 10 \equiv 7 \pmod 3 107(mod3)

基本性质

性质1

公式 ( 1 ) (1) (1) 等价于 m m m 整除 ( a − b ) (a-b) (ab),记为: m ∣ ( a − b ) m | (a-b) m(ab)

或者说 ( a − b ) (a-b) (ab) m m m 的倍数,即必然存在 k k k ,使得 a = k ∗ m + b a = k * m + b a=km+b

举个例子, 10 10 10 7 7 7 3 3 3 同余,参考公式 ( 4 ) (4) (4),则存在 k = 1 k = 1 k=1,使得:
10 = 3 ∗ 1 + 7 10 = 3 * 1 + 7 10=31+7

性质2

同余式子中,同余两数同时 加、减、乘 上任意一个数整数 x x x,同余式依然成立,假设上面公式 ( 1 ) (1) (1) 成立,则以下公式必然成立
a + x ≡ b + x ( m o d m ) a+x \equiv b+x \pmod m a+xb+x(modm)

a − x ≡ b − x ( m o d m ) a-x \equiv b-x \pmod m axbx(modm)

a ∗ x ≡ b ∗ x ( m o d m ) a*x \equiv b*x \pmod m axbx(modm)

性质3 (同余式相加、相减、相乘)

假设两个模 m m m 同余等式成立,如下:
a ≡ b ( m o d m ) a \equiv b \pmod m ab(modm)

x ≡ y ( m o d m ) x \equiv y \pmod m xy(modm)

则两式相加、相减、相乘依然成立,即下面公式依然成立:
a + x ≡ b + y ( m o d m ) a+x \equiv b+y \pmod m a+xb+y(modm)

a − x ≡ b − y ( m o d m ) a-x \equiv b-y \pmod m axby(modm)

a ∗ x ≡ b ∗ y ( m o d m ) a*x \equiv b*y \pmod m axby(modm)

a n ≡ b n ( m o d m ) a^n \equiv b^n \pmod m anbn(modm)

例题

求解 3 2018 + 4 2019 3^{2018} + 4^{2019} 32018+42019 整除 5 5 5 的余数是多少?

解:

可以先观察 令存在 x x x y y y,满足下面等式:
3 2018 ≡ x ( m o d 5 ) 3^{2018} \equiv x \pmod 5 32018x(mod5)

4 2019 ≡ y ( m o d 5 ) 4^{2019} \equiv y \pmod 5 42019y(mod5)

对于等式 ( 16 ) (16) (16),容易求解,首先很容易得到 4 ≡ − 1 ( m o d 5 ) 4 \equiv -1 \pmod 5 41(mod5) ,由公式 ( 14 ) (14) (14)可以得到, 4 2019 ≡ ( − 1 ) 2019 ( m o d 5 ) 4^{2019} \equiv (-1)^{2019} \pmod 5 42019(1)2019(mod5),即可得
4 2019 ≡ − 1 ( m o d 5 ) 4^{2019} \equiv -1 \pmod 5 420191(mod5)
对于等式 ( 15 ) (15) (15),容易得出 9 ≡ − 1 ( m o d 5 ) 9 \equiv -1 \pmod 5 91(mod5),即 3 2 ≡ − 1 ( m o d 5 ) 3^2 \equiv -1 \pmod 5 321(mod5),继续转换可以得到 ( 3 2 ) 1009 ≡ ( − 1 ) 1009 ( m o d 5 ) (3^2)^{1009} \equiv (-1)^{1009} \pmod 5 (32)1009(1)1009(mod5),即可得
3 2018 ≡ − 1 ( m o d 5 ) 3^{2018} \equiv -1 \pmod 5 320181(mod5)
同余式 ( 17 ) (17) (17) ( 18 ) (18) (18) 通过性质 3 3 3 相加可得:
3 2018 + 4 2019 ≡ − 2 ≡ 3 ( m o d 5 ) 3^{2018} + 4^{2019} \equiv -2 \equiv 3 \pmod 5 32018+4201923(mod5)
因此余数为3。

weixin073智慧旅游平台开发微信小程序+ssm后端毕业源码案例设计 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
python017基于Python贫困生资助管理系统带vue前后端分离毕业源码案例设计 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值