同余
基本概念
同余指两个数
a
a
a和
b
b
b 除以另一个数
m
m
m 后,余数相同,则称
a
a
a 和
b
b
b 同余,数学公式为:
a
≡
b
(
m
o
d
m
)
a \equiv b \pmod m
a≡b(modm)
举个例子,
10
10
10 除以
3
3
3 ,商
3
3
3 余
1
1
1 ,
7
7
7 除以
3
3
3 ,商
2
2
2 余
1
1
1,公式如下:
10
÷
3
=
3
⋅
⋅
⋅
⋅
⋅
⋅
1
10 \div 3 = 3 ······ 1
10÷3=3⋅⋅⋅⋅⋅⋅1
7 ÷ 3 = 2 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 7 \div 3 = 2 ······ 1 7÷3=2⋅⋅⋅⋅⋅⋅1
以上两个公式可以统称为
10
10
10 和
7
7
7 模
3
3
3 同余,同余等式如下:
10
≡
7
(
m
o
d
3
)
10 \equiv 7 \pmod 3
10≡7(mod3)
基本性质
性质1
公式 ( 1 ) (1) (1) 等价于 m m m 整除 ( a − b ) (a-b) (a−b),记为: m ∣ ( a − b ) m | (a-b) m∣(a−b),
或者说 ( a − b ) (a-b) (a−b) 是 m m m 的倍数,即必然存在 k k k ,使得 a = k ∗ m + b a = k * m + b a=k∗m+b。
举个例子,
10
10
10 和
7
7
7 模
3
3
3 同余,参考公式
(
4
)
(4)
(4),则存在
k
=
1
k = 1
k=1,使得:
10
=
3
∗
1
+
7
10 = 3 * 1 + 7
10=3∗1+7
性质2
同余式子中,同余两数同时 加、减、乘 上任意一个数整数
x
x
x,同余式依然成立,假设上面公式
(
1
)
(1)
(1) 成立,则以下公式必然成立
a
+
x
≡
b
+
x
(
m
o
d
m
)
a+x \equiv b+x \pmod m
a+x≡b+x(modm)
a − x ≡ b − x ( m o d m ) a-x \equiv b-x \pmod m a−x≡b−x(modm)
a ∗ x ≡ b ∗ x ( m o d m ) a*x \equiv b*x \pmod m a∗x≡b∗x(modm)
性质3 (同余式相加、相减、相乘)
假设两个模
m
m
m 同余等式成立,如下:
a
≡
b
(
m
o
d
m
)
a \equiv b \pmod m
a≡b(modm)
x ≡ y ( m o d m ) x \equiv y \pmod m x≡y(modm)
则两式相加、相减、相乘依然成立,即下面公式依然成立:
a
+
x
≡
b
+
y
(
m
o
d
m
)
a+x \equiv b+y \pmod m
a+x≡b+y(modm)
a − x ≡ b − y ( m o d m ) a-x \equiv b-y \pmod m a−x≡b−y(modm)
a ∗ x ≡ b ∗ y ( m o d m ) a*x \equiv b*y \pmod m a∗x≡b∗y(modm)
a n ≡ b n ( m o d m ) a^n \equiv b^n \pmod m an≡bn(modm)
例题
求解 3 2018 + 4 2019 3^{2018} + 4^{2019} 32018+42019 整除 5 5 5 的余数是多少?
解:
可以先观察 令存在
x
x
x 和
y
y
y,满足下面等式:
3
2018
≡
x
(
m
o
d
5
)
3^{2018} \equiv x \pmod 5
32018≡x(mod5)
4 2019 ≡ y ( m o d 5 ) 4^{2019} \equiv y \pmod 5 42019≡y(mod5)
对于等式
(
16
)
(16)
(16),容易求解,首先很容易得到
4
≡
−
1
(
m
o
d
5
)
4 \equiv -1 \pmod 5
4≡−1(mod5) ,由公式
(
14
)
(14)
(14)可以得到,
4
2019
≡
(
−
1
)
2019
(
m
o
d
5
)
4^{2019} \equiv (-1)^{2019} \pmod 5
42019≡(−1)2019(mod5),即可得
4
2019
≡
−
1
(
m
o
d
5
)
4^{2019} \equiv -1 \pmod 5
42019≡−1(mod5)
对于等式
(
15
)
(15)
(15),容易得出
9
≡
−
1
(
m
o
d
5
)
9 \equiv -1 \pmod 5
9≡−1(mod5),即
3
2
≡
−
1
(
m
o
d
5
)
3^2 \equiv -1 \pmod 5
32≡−1(mod5),继续转换可以得到
(
3
2
)
1009
≡
(
−
1
)
1009
(
m
o
d
5
)
(3^2)^{1009} \equiv (-1)^{1009} \pmod 5
(32)1009≡(−1)1009(mod5),即可得
3
2018
≡
−
1
(
m
o
d
5
)
3^{2018} \equiv -1 \pmod 5
32018≡−1(mod5)
同余式
(
17
)
(17)
(17) 和
(
18
)
(18)
(18) 通过性质
3
3
3 相加可得:
3
2018
+
4
2019
≡
−
2
≡
3
(
m
o
d
5
)
3^{2018} + 4^{2019} \equiv -2 \equiv 3 \pmod 5
32018+42019≡−2≡3(mod5)
因此余数为3。