Help Tomisu UVA - 11440

问题

分析

首先要求在 [ 2 , N ! ] [2,N!] [2,N!]内和M!互素的数的个数
由于最大公约数的性质, g c d ( k , M ! ) = g c d ( M ! , k % M ! ) gcd(k,M!)=gcd(M!,k\%M!) gcd(k,M!)=gcd(M!,k%M!),对于k>M!,k和M!互素等价于(k%M!)和M!互素,由于N>=M,所以N!是M!的整数倍数,那么整个区间内和M!互素的数的个数就是[1,M!]内和M!互素的数的个数的 N ! / M ! 倍 N!/M!倍 N!/M!,现在只对 k ∈ [ 1 , M ! ] k\in [1,M!] k[1,M!]内的数字求和M!互素的个数,所以使用phifac[k]表示小于k!的且和k!互素的数量,然后phifac[m]就是所求
根据欧拉phi函数推导可知:
如果k是素数 p h i f a c [ k ] = p h i f a c [ k − 1 ] ∗ ( k − 1 ) phifac[k]=phifac[k-1]*(k-1) phifac[k]=phifac[k1](k1),如果k不是素数, p h i f a c [ k ] = p h i f a c [ k − 1 ] ∗ k phifac[k]=phifac[k-1]*k phifac[k]=phifac[k1]k
最后还要减去1

#include <cstdio>
#include <cstring>
#include <iostream>
#include <cmath>
#include <vector>
#include <utility>
using namespace std;
typedef long long ll;
const ll mod=100000007LL,maxn=10000000+1;
ll n,m;
int vis[maxn],phifac[maxn];  //phifac[n]=phi[n!]

//vis[i]==0代表i是素数,1代表不是
void getPrime(){
    int m=sqrt(maxn+0.5);
    for(int i=2;i<=m;++i){
        if(vis[i]==0){
            for(int j=i*i;j<maxn;j+=i){
                vis[j]=1;
            }
        }
    }
}

int main(void){
    getPrime();
    //计算所有的phifac[k]的值
    phifac[1]=1;
    for(int i=2;i<=maxn;++i){
        phifac[i]=(long long)phifac[i-1]*((vis[i]==0)?(i-1):i)%mod;
    }
    while(scanf("%lld%lld",&n,&m)==2 && n){
        ll ans=phifac[m];  //查表,计算出1-m!中和m!互素的有多少个
        for(int i=m+1;i<=n;++i){
            ans=ans*i%mod;  //乘以n!/m!,将结果扩展到1-n!区间中
        }
        printf("%lld\n",(ans-1+mod)%mod);  //去除数字1
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值