Spring AI如何调用本地部署的大模型

Spring AI 调用本地部署的大模型主要通过集成 Ollama(本地大模型运行框架)实现,结合 Spring Boot 的模块化设计提供企业级调用支持。以下是详细步骤和实现原理:


一、环境准备

1. 部署 Ollama 服务

  • Ollama 官网 下载并安装本地服务。
  • 启动 Ollama 服务后,通过命令行拉取模型(如 ollama pull llama3ollama pull deepseek-r1:7b)。
  • 验证服务可用性:访问 http://localhost:11434,确认接口响应正常。

2. Docker 容器化部署(可选)

通过 Docker 简化环境配置,例如:

docker run -d -p 11434:11434 --name ollama ollama/ollama:0.6.2
docker exec -it ollama ollama pull deepseek-r1:7b  # 拉取模型

此方式适合需要隔离环境或使用 GPU 加速的场景。


二、Spring Boot 项目配置

1. 添加依赖

pom.xml 中引入 Spring AI 的 Ollama 模块:

<dependency>
    <groupId>org.springframework.ai</groupId>
    <artifactId>spring-ai-ollama-spring-boot-starter</artifactId>
    <version>1.0.0-M6</version>
</dependency>

同时需依赖 Spring Boot 3.2.x 或更高版本。

2. 配置 Ollama 连接

application.yml 中指定模型服务地址和默认模型:

spring:
  ai:
    ollama:
      base-url: http://localhost:11434  # Ollama 服务地址
      chat:
        model: deepseek-r1:7b           # 默认调用的模型名称

此配置使 Spring AI 自动注入 OllamaChatClient


三、代码实现

1. 定义 Controller

创建 REST 接口接收请求并转发至大模型:

@RestController
public class OllamaController {
    @Autowired
    private OllamaChatClient chatClient;

    // 普通文本调用
    @GetMapping("/ai/chat")
    public String chat(@RequestParam String message) {
        Prompt prompt = new Prompt(message);
        return chatClient.call(prompt).getResult().getOutput().getContent();
    }

    // 流式调用(适用于实时对话)
    @GetMapping("/ai/chat/stream")
    public Flux<String> streamChat(@RequestParam String message) {
        Prompt prompt = new Prompt(message);
        return chatClient.stream(prompt)
                .map(response -> response.getResult().getOutput().getContent());
    }
}

流式调用通过 Flux 返回逐句生成的文本,适合需要实时响应的场景。

2. 自定义提示词与参数

通过 Prompt 对象支持复杂交互:

SystemPromptTemplate systemPromptTemplate = new SystemPromptTemplate("你是一个专业的助手");
Message systemMessage = systemPromptTemplate.createMessage(Map.of("prompt", "请用中文回答"));
Prompt prompt = new Prompt(List.of(new UserMessage(message), systemMessage));

可结合 SystemPromptTemplate 控制模型输出格式。


四、高级功能与优化

1. 连续对话支持

使用 Redis 缓存上下文信息,实现多轮对话:

@Autowired
private RedisTemplate<String, String> redisTemplate;

public String chatWithContext(String sessionId, String message) {
    String history = redisTemplate.opsForValue().get(sessionId);
    String fullMessage = history + "\nUser: " + message;
    // 调用模型并更新缓存
    redisTemplate.opsForValue().set(sessionId, fullMessage);
    return chatClient.call(new Prompt(fullMessage)).getResult().getOutput().getContent();
}

此方案适合企业内部知识库等场景。

2. 性能调优

  • 批量推理:通过 OllamaApi 直接调用低层 API,减少框架开销。
  • GPU 加速:在 Docker 中配置 NVIDIA 驱动,提升大模型推理速度。
  • 超时设置:在 application.yml 中添加 spring.ai.ollama.timeout=60s 防止长请求阻塞。

五、测试与验证

1. 调用示例

访问 http://localhost:8080/ai/chat?message=你好,返回模型生成的文本。
流式接口可通过 SSE(Server-Sent Events)在前端实时展示生成过程。

2. 常见问题排查

  • 模型未加载:检查 Ollama 日志确认模型已下载(路径:~/.ollama/models)。
  • 连接超时:确认防火墙未阻止 11434 端口,或调整 base-url 为 Docker 容器 IP。
  • 内存不足:7B 模型需至少 8GB 空闲内存,可通过 ollama run <模型> --num-gpu-layers 20 启用 GPU 卸载。

总结

通过 Spring AI + Ollama,开发者能以 低代码 方式快速集成本地大模型,同时享受 Spring 生态的高并发、安全性和企业级维护能力。此方案适用于数据隐私敏感、需要离线部署或定制化微调的场景,如金融风控、医疗咨询等。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值