考前抱佛脚

会场安排

#include<bits/stdc++.h>
using namespace std;
struct hc
{
	int b,e;
}a[10005];
bool cmp(hc a,hc b)
{
	if(a.e==b.e )
	{
		return a.b<b.b;
	}
	return a.e<b.e;
}
int main()
{
	int m;
	scanf("%d",&m);
	while(m--)
	{
		int n,i;
		scanf("%d",&n);
		for(i=0;i<n;i++)
		{
			scanf("%d%d",&a[i].b,&a[i].e );
		}
		sort(a,a+n,cmp);
		int t=1,end=a[0].e;
		for(i=1;i<n;i++)
		{
			if(a[i].b>=end+1)
			{
				t++;end=a[i].e;
			}
		}
		printf("%d\n",t);
	}
}

采药

#include <bits/stdc++.h>
using namespace std;
int dp[20005][20005];
int main() {
    int t, m, i, time[30], val[30];
    scanf("%d%d", &t, &m);
    for (i = 1; i <= m; i++) {
        scanf("%d%d", &time[i], &val[i]);
    }
    int big = 0;
    for (int i = 1; i <= m; i++) {
        for (int j = 1; j <= t; j++) {
            dp[i][j] = dp[i - 1][j];
            if (j >= time[i])
                dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - time[i]] + val[i]);
            big = max(dp[i][j], big);
        }
    }
    printf("%d", big);
    return 0;
}

车牌号
输出最小的字序典

#include <stdio.h> 
#include <string.h>
  
  int main(){
     int T;
     int n;
      char s[10];
      char min[10];
      int i;
     
     scanf("%d",&T);
     
    while(T--){
         scanf("%d",&n);
         
        for(i=0;i<n;i++){
             scanf("%s",&s);
            
           if(i==0){
                 strcpy(min,s);
                 continue;        
             }
             
            if(strcmp(s,min)<0)
                 strcpy(min,s);
         }
         printf("%s\n",min);    
     }
    return 0;
 }
### 关于 kkksc03 考前复习的深度资料 #### 题目背景与目标 kkksc03 是一名大学生,其生活方式较为懒散,在学期大部分时间内并未投入学习精力。然而,随着期末考试的到来,为了通过四门课程的考核,他不得不采取紧急措施来弥补学业上的不足[^2]。 #### 复习策略的核心问题 该问题本质上是一个优化问题,涉及如何合理分配有限的时间资源以最大化复习效果。具体而言,kkksc03 面临的任务可以分解如下: 1. **科目数量固定**:共有 4 科需要复习,分别为 A、B、C 和 D。 2. **题目分布明确**:每科对应一个习题集,其中包含一定数量的题目 \(s_1, s_2, s_3, s_4\),完成这些题目所需时间各不相同[^4]。 3. **时间约束显著**:由于复习时间有限,需找到一种最优解法使得总复习效率最高。 #### 解决方案概述 针对上述问题,通常采用深度优先搜索(DFS)算法结合剪枝技术实现高效求解。以下是解决方案的关键点: - **状态表示**:定义当前已处理的科目及其对应的已完成题目数目作为 DFS 的核心状态变量[^3]。 - **递归终止条件**:当所有科目均已完全复习完毕时停止递归操作,并记录此时所耗费的总时间。 - **剪枝优化**: - 如果发现某条路径已经无法优于现有最佳结果,则立即放弃继续探索此分支。 - 对剩余未处理部分进行预估计算,提前排除不可能成为全局最优的情况。 ```python def dfs(current_subject, total_time_spent): global best_solution # 终止条件判断 if current_subject == 5: if total_time_spent < best_solution: best_solution = total_time_spent return # 尝试不同组合方式 for i in range(possible_options[current_subject]): new_total_time = total_time_spent + time_cost[current_subject][i] # 剪枝逻辑 if new_total_time >= best_solution: continue dfs(current_subject + 1, new_total_time) # 初始化参数并调用函数入口 best_solution = float('inf') dfs(1, 0) print(best_solution) ``` 以上代码片段展示了基于 DFS 实现的具体方法框架。 #### 数据输入与输出说明 数据结构设计应充分考虑实际需求,确保能够灵活适应各类测试案例的要求。例如,对于第四类别的详细信息录入形式可参照以下模式[^5]: - 输入样例中的第五行提供了有关学科 D 所含全部子项的数据集合 \(\{D_1, D_2,...,D_{s_4}\}\),用于后续运算过程中的精确匹配与验证工作。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值