坐标的离散化

n*m的格子上画了l条水平或者竖直的直线,求这些线将这些格子化成了多少区域。

具体的数据范围看挑战程序设计竞赛这本书,这个题目的数据范围比较大,所以的话需要将坐标离散化。作用就是将区间的大小变小而且不影响数据的结果。

可是这本书给的数据太坑,根本没有起到离散化的作用。。。。

#include<cstdio>
#include<queue>
#include<cstring>
#include<algorithm>
#include <iostream>
#define maxn 1000

using namespace std;
typedef pair<int,int> P;
int x1[maxn];
int x2[maxn];
int y1[maxn];
int y2[maxn];
bool Map[maxn*6][maxn*6];
int dx[4]={-1,0,1,0};
int dy[4]={0,-1,0,1};
int n,m,l;
int compress(int * x1,int *x2,int num)//这个num这个值在那本书上不是我的代码的意思,我总感觉这个值应该是这个意思。。。
 {                                   /*这个函数的作用就是将坐标离散化,减小区间的长度的(而那本书的数据太水,没有起到区间长度变小的意思),
如果输入的是 10 10 1 1 10 4 4 ,则可以看到长度变小*/
    vector<int>all;
    for (int i=0;i<l;i++)
    {
        for (int d=-1;d<=1;d++)
        {
            if (x1[i]+d>=1&&x1[i]+d<=num)
            all.push_back(x1[i]+d);
            if (x2[i]+d>=1&&x2[i]+d<=num)
            all.push_back(x2[i]+d);
        }
    }
    sort(all.begin(),all.end());
    all.erase(unique(all.begin(),all.end()),all.end());
    for (int i=0;i<num;i++)
    {
        x1[i]=find(all.begin(),all.end(),x1[i])-all.begin();
        x2[i]=find(all.begin(),all.end(),x2[i])-all.begin();
    }
    return all.size();
}
void bfs()
{
    int res=0;
    int xx,yy;
    for (int i=0;i<n;i++)
    {
        for (int j=0;j<m;j++)
        {
            if (Map[i][j])
                continue;
            res++;
            queue<P>que;
            que.push(P(i,j));
            while(que.size())
            {
                P p=que.front();
                que.pop();
                for (int k=0; k<4; k++)
                {

                    xx=p.first+dx[k];
                    yy=p.second+dy[k];
                    if (xx>=0&&xx<n&&yy>=0&&yy<m&&Map[xx][yy]==false)
                    {
                        Map[xx][yy]=true;
                        que.push(P(xx,yy));
                    }
                }
            }

        }
    }
    printf("%d\n",res);
}
void solve()
{
    n=compress(x1,x2,n);
    m=compress(y1,y2,m);
    memset(Map,false,sizeof(Map));
    for (int i=0;i<l;i++)
    {
        for (int j=x1[i];j<=x2[i];j++)
        {
            for (int k=y1[i];k<=y2[i];k++)
            {
                Map[j][k]=true;
            }
        }
    }
    bfs();
}
int main()
{
    scanf("%d %d %d",&n,&m,&l);
    for (int i=0;i<l;i++)
    {
        scanf("%d",&x1[i]);
    }
    for (int i=0;i<l;i++)
    {
        scanf("%d",&x2[i]);
    }
    for (int i=0;i<l;i++)
    {
        scanf("%d",&y1[i]);
    }
    for (int i=0;i<l;i++)
    {
        scanf("%d",&y2[i]);
    }
    solve();
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值