More Cowbell

Description

Kevin Sun wants to move his precious collection of n cowbells from Naperthrill to Exeter, where there is actually grass instead of corn. Before moving, he must pack his cowbells into k boxes of a fixed size. In order to keep his collection safe during transportation, he won't place more than two cowbells into a single box. Since Kevin wishes to minimize expenses, he is curious about the smallest size box he can use to pack his entire collection.

Kevin is a meticulous cowbell collector and knows that the size of his i-th (1 ≤ i ≤ n) cowbell is an integer si. In fact, he keeps his cowbells sorted by size, so si - 1 ≤ si for any i > 1. Also an expert packer, Kevin can fit one or two cowbells into a box of size s if and only if the sum of their sizes does not exceed s. Given this information, help Kevin determine the smallest s for which it is possible to put all of his cowbells into k boxes of size s.

Input

The first line of the input contains two space-separated integers n and k (1 ≤ n ≤ 2·k ≤ 100 000), denoting the number of cowbells and the number of boxes, respectively.

The next line contains n space-separated integers s1, s2, ..., sn (1 ≤ s1 ≤ s2 ≤ ... ≤ sn ≤ 1 000 000), the sizes of Kevin's cowbells. It is guaranteed that the sizes si are given in non-decreasing order.

Output

Print a single integer, the smallest s for which it is possible for Kevin to put all of his cowbells into k boxes of size s.

Sample Input

Input
2 1
2 5
Output
7
Input
4 3
2 3 5 9
Output
9
Input
3 2
3 5 7
Output
8

Hint

In the first sample, Kevin must pack his two cowbells into the same box.

In the second sample, Kevin can pack together the following sets of cowbells: {2, 3}{5} and {9}.

In the third sample, the optimal solution is {3, 5} and {7}.


题目大意:给你一个n一个k,n<=2k;让你把n个物品放进k个箱子里面每个箱子的大小一样,问你最小箱子为多大!

思路:如果n<=k的话直接就找到n里面的最大值,其他的就先排序,然后让前n-k个跟第n-k到-n-k+n-k分别相加,求出最大值与最后一个比较求最大值。

看代码:

#include <cstdio>
#include <cstring>
#include <string>
#include <iostream>
#include <algorithm>
#include <stdlib.h>
#include <cmath>
using namespace std;
int main()
{
    int a[200000];
    int n,k;
    cin>>n>>k;
    for(int i = 0;i < n;i++)
    {
        cin>>a[i];
    }
    sort(a,a+n);
    if(n<=k)
    {
        cout<<a[n-1]<<endl;
    }
    else
    {
        int t=n-k;
        int max1=0;
        for(int j = 0;j < t;j++)
        {
            max1=max(a[j+t]+a[t-j-1],max1);
        }
        cout<<max(max1,a[n-1]);
    }
    return 0;
}







评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值