Description
Kevin Sun wants to move his precious collection of n cowbells from Naperthrill to Exeter, where there is actually grass instead of corn. Before moving, he must pack his cowbells into k boxes of a fixed size. In order to keep his collection safe during transportation, he won't place more than two cowbells into a single box. Since Kevin wishes to minimize expenses, he is curious about the smallest size box he can use to pack his entire collection.
Kevin is a meticulous cowbell collector and knows that the size of his i-th (1 ≤ i ≤ n) cowbell is an integer si. In fact, he keeps his cowbells sorted by size, so si - 1 ≤ si for any i > 1. Also an expert packer, Kevin can fit one or two cowbells into a box of size s if and only if the sum of their sizes does not exceed s. Given this information, help Kevin determine the smallest s for which it is possible to put all of his cowbells into k boxes of size s.
Input
The first line of the input contains two space-separated integers n and k (1 ≤ n ≤ 2·k ≤ 100 000), denoting the number of cowbells and the number of boxes, respectively.
The next line contains n space-separated integers s1, s2, ..., sn (1 ≤ s1 ≤ s2 ≤ ... ≤ sn ≤ 1 000 000), the sizes of Kevin's cowbells. It is guaranteed that the sizes si are given in non-decreasing order.
Output
Print a single integer, the smallest s for which it is possible for Kevin to put all of his cowbells into k boxes of size s.
Sample Input
2 1 2 5
7
4 3 2 3 5 9
9
3 2 3 5 7
8
Hint
In the first sample, Kevin must pack his two cowbells into the same box.
In the second sample, Kevin can pack together the following sets of cowbells: {2, 3}, {5} and {9}.
In the third sample, the optimal solution is {3, 5} and {7}.
题目大意:给你一个n一个k,n<=2k;让你把n个物品放进k个箱子里面每个箱子的大小一样,问你最小箱子为多大!
思路:如果n<=k的话直接就找到n里面的最大值,其他的就先排序,然后让前n-k个跟第n-k到-n-k+n-k分别相加,求出最大值与最后一个比较求最大值。
看代码:
#include <cstdio>
#include <cstring>
#include <string>
#include <iostream>
#include <algorithm>
#include <stdlib.h>
#include <cmath>
using namespace std;
int main()
{
int a[200000];
int n,k;
cin>>n>>k;
for(int i = 0;i < n;i++)
{
cin>>a[i];
}
sort(a,a+n);
if(n<=k)
{
cout<<a[n-1]<<endl;
}
else
{
int t=n-k;
int max1=0;
for(int j = 0;j < t;j++)
{
max1=max(a[j+t]+a[t-j-1],max1);
}
cout<<max(max1,a[n-1]);
}
return 0;
}