BZOJ3524[Poi2014] Couriers

30 篇文章 0 订阅
17 篇文章 0 订阅

BZOJ3524[Poi2014] Couriers

Description

给一个长度为n的序列a。1≤a[i]≤n。

m组询问,每次询问一个区间[l,r],是否存在一个数在[l,r]中出现的次数大于(r-l+1)/2。如果存在,输出这个数,否则输出0。

Input

第一行两个数n,m。

第二行n个数,a[i]。

接下来m行,每行两个数l,r,表示询问[l,r]这个区间。

Output

m行,每行对应一个答案。

Sample Input

7 5

1 1 3 2 3 4 3

1 3

1 4

3 7

1 7

6 6

Sample Output

1

0

3

0

4

HINT

【数据范围】

n,m≤500000

Solution:

求区间出现次数超过一半的数,算是一道比较经典的题吧。

这个小问题有 O(n) 解法:

维护一个当前出现次数最多的数与它的个数,如果下一个数是它,则 cnt ++,否则 cnt –,减为0之后就放弃它,那么最后留下的那个数就是求的数了。

#include<stdio.h>
int main(){
    int n,pos,cnt,x;
    scanf("%d",&n);
    scanf("%d",&pos);cnt=1;
    for(int i=2;i<=n;i++){
        scanf("%d",&x);
        if(x==pos)cnt++;
        else{
            if(cnt==0){
                cnt=1;
                pos=x;
            }else cnt--;
        }
    }
    printf("%d\n",pos);
    return 0;
}

于是就可以用线段树(或倍增或分块)记录这两个信息,合并得到解了。复杂度 O(nlogn)

当然,这题也可以直接用主席树做,而且也并不慢(代码也短),复杂度 O(nlogn)

#include<stdio.h>
#include<ctype.h>
#define M 500005
#define MLOGM 15000005
int cnt[MLOGM],tot,Lson[MLOGM],Rson[MLOGM],tp[M];
void Rd(int &res){
    char c;res=0;
    while(c=getchar(),!isdigit(c));
    do{
        res=(res<<1)+(res<<3)+(c^48);
    }while(c=getchar(),isdigit(c));
}
void Build(int L,int R,int &p){
    p=++tot;
    cnt[p]=0;
    if(L==R)return;
    int mid=(L+R)>>1;
    Build(L,mid,Lson[p]);
    Build(mid+1,R,Rson[p]);
}
void Insert(int L,int R,int x,int op,int &p){
    p=++tot;
    cnt[p]=cnt[op]+1;
    if(L==R)return;
    Lson[p]=Lson[op];
    Rson[p]=Rson[op];
    int mid=(L+R)>>1;
    if(x<=mid)Insert(L,mid,x,Lson[op],Lson[p]);
    else Insert(mid+1,R,x,Rson[op],Rson[p]);
}
int Query(int L,int R,int x,int op,int p){
    if(cnt[p]-cnt[op]<x)return 0;
    if(L==R)return L;
    int ct=cnt[Lson[p]]-cnt[Lson[op]];
    int mid=(L+R)>>1;
    if(ct>=x)return Query(L,mid,x,Lson[op],Lson[p]);
    else return Query(mid+1,R,x,Rson[op],Rson[p]);
}
int main(){
    int n,m,x;
    Rd(n);Rd(m);
    Build(1,n,tp[0]);
    for(int i=1;i<=n;i++){
        Rd(x);
        Insert(1,n,x,tp[i-1],tp[i]);
    }
    while(m--){
        int L,R;
        Rd(L);Rd(R);
        printf("%d\n",Query(1,n,(R-L+1)/2+1,tp[L-1],tp[R]));
    }
    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 牛牛和她的朋友们正在玩一个有趣的游戏,他们需要构建一个有 $n$ 个节点的无向图,每个节点都有一个唯一的编号并且编号从 $1$ 到 $n$。他们需要从节点 $1$ 到节点 $n$ 找到一条最短路径,其中路径长度是经过的边权的和。为了让游戏更有趣,他们决定在图上添加一些额外的边,这些边的权值都是 $x$。他们想知道,如果他们添加的边数尽可能少,最短路径的长度最多会增加多少。 输入格式 第一行包含两个正整数 $n$ 和 $m$,表示节点数和边数。 接下来 $m$ 行,每行包含三个整数 $u_i,v_i,w_i$,表示一条无向边 $(u_i,v_i)$,权值为 $w_i$。 输出格式 输出一个整数,表示最短路径的长度最多会增加多少。 数据范围 $2 \leq n \leq 200$ $1 \leq m \leq n(n-1)/2$ $1 \leq w_i \leq 10^6$ 输入样例 #1: 4 4 1 2 2 2 3 3 3 4 4 4 1 5 输出样例 #1: 5 输入样例 #2: 4 3 1 2 1 2 3 2 3 4 3 输出样例 #2: 2 算法 (BFS+最短路) $O(n^3)$ 我们把问题转化一下,假设原图中没有添加边,所求的就是点 $1$ 到点 $n$ 的最短路,并且我们已经求出了这个最短路的长度 $dis$。 接下来我们从小到大枚举边权 $x$,每次将 $x$ 加入图中,然后再次求解点 $1$ 到点 $n$ 的最短路 $dis'$,那么增加的最短路长度就是 $dis'-dis$。 我们发现,每次加入一个边都需要重新求解最短路。如果我们使用 Dijkstra 算法的话,每次加入一条边需要 $O(m\log m)$ 的时间复杂度,总的时间复杂度就是 $O(m^2\log m)$,无法通过本题。因此我们需要使用更优秀的算法。 观察到 $n$ 的范围比较小,我们可以考虑使用 BFS 求解最短路。如果边权均为 $1$,那么 BFS 可以在 $O(m)$ 的时间复杂度内求解最短路。那么如果我们只是加入了一条边的话,我们可以将边权为 $x$ 的边看做 $x$ 条边的组合,每次加入该边时,我们就在原始图上添加 $x$ 条边,边权均为 $1$。这样,我们就可以使用一次 BFS 求解最短路了。 但是,我们不得不考虑加入多条边的情况。如果我们还是将边权为 $x$ 的边看做 $x$ 条边的组合,那么我们就需要加入 $x$ 条边,而不是一条边。这样,我们就不能使用 BFS 了。 但是,我们可以使用 Floyd 算法。事实上,我们每次加入边时,只有边权等于 $x$ 的边会发生变化。因此,如果我们枚举边权 $x$ 时,每次只需要将边权等于 $x$ 的边加入图中,然后使用 Floyd 算法重新计算最短路即可。由于 Floyd 算法的时间复杂度为 $O(n^3)$,因此总的时间复杂度为 $O(n^4)$。 时间复杂度 $O(n^4)$ 空间复杂度 $O(n^2)$ C++ 代码 注意点:Floyd算法计算任意两点之间的最短路径,只需要在之前的路径基础上加入新的边构成的新路径进行更新即可。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值