BZOJ3524[Poi2014] Couriers

30 篇文章 0 订阅
17 篇文章 0 订阅

BZOJ3524[Poi2014] Couriers

Description

给一个长度为n的序列a。1≤a[i]≤n。

m组询问,每次询问一个区间[l,r],是否存在一个数在[l,r]中出现的次数大于(r-l+1)/2。如果存在,输出这个数,否则输出0。

Input

第一行两个数n,m。

第二行n个数,a[i]。

接下来m行,每行两个数l,r,表示询问[l,r]这个区间。

Output

m行,每行对应一个答案。

Sample Input

7 5

1 1 3 2 3 4 3

1 3

1 4

3 7

1 7

6 6

Sample Output

1

0

3

0

4

HINT

【数据范围】

n,m≤500000

Solution:

求区间出现次数超过一半的数,算是一道比较经典的题吧。

这个小问题有 O(n) 解法:

维护一个当前出现次数最多的数与它的个数,如果下一个数是它,则 cnt ++,否则 cnt –,减为0之后就放弃它,那么最后留下的那个数就是求的数了。

#include<stdio.h>
int main(){
    int n,pos,cnt,x;
    scanf("%d",&n);
    scanf("%d",&pos);cnt=1;
    for(int i=2;i<=n;i++){
        scanf("%d",&x);
        if(x==pos)cnt++;
        else{
            if(cnt==0){
                cnt=1;
                pos=x;
            }else cnt--;
        }
    }
    printf("%d\n",pos);
    return 0;
}

于是就可以用线段树(或倍增或分块)记录这两个信息,合并得到解了。复杂度 O(nlogn)

当然,这题也可以直接用主席树做,而且也并不慢(代码也短),复杂度 O(nlogn)

#include<stdio.h>
#include<ctype.h>
#define M 500005
#define MLOGM 15000005
int cnt[MLOGM],tot,Lson[MLOGM],Rson[MLOGM],tp[M];
void Rd(int &res){
    char c;res=0;
    while(c=getchar(),!isdigit(c));
    do{
        res=(res<<1)+(res<<3)+(c^48);
    }while(c=getchar(),isdigit(c));
}
void Build(int L,int R,int &p){
    p=++tot;
    cnt[p]=0;
    if(L==R)return;
    int mid=(L+R)>>1;
    Build(L,mid,Lson[p]);
    Build(mid+1,R,Rson[p]);
}
void Insert(int L,int R,int x,int op,int &p){
    p=++tot;
    cnt[p]=cnt[op]+1;
    if(L==R)return;
    Lson[p]=Lson[op];
    Rson[p]=Rson[op];
    int mid=(L+R)>>1;
    if(x<=mid)Insert(L,mid,x,Lson[op],Lson[p]);
    else Insert(mid+1,R,x,Rson[op],Rson[p]);
}
int Query(int L,int R,int x,int op,int p){
    if(cnt[p]-cnt[op]<x)return 0;
    if(L==R)return L;
    int ct=cnt[Lson[p]]-cnt[Lson[op]];
    int mid=(L+R)>>1;
    if(ct>=x)return Query(L,mid,x,Lson[op],Lson[p]);
    else return Query(mid+1,R,x,Rson[op],Rson[p]);
}
int main(){
    int n,m,x;
    Rd(n);Rd(m);
    Build(1,n,tp[0]);
    for(int i=1;i<=n;i++){
        Rd(x);
        Insert(1,n,x,tp[i-1],tp[i]);
    }
    while(m--){
        int L,R;
        Rd(L);Rd(R);
        printf("%d\n",Query(1,n,(R-L+1)/2+1,tp[L-1],tp[R]));
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值