BZOJ3524[Poi2014] Couriers
Description
给一个长度为n的序列a。1≤a[i]≤n。
m组询问,每次询问一个区间[l,r],是否存在一个数在[l,r]中出现的次数大于(r-l+1)/2。如果存在,输出这个数,否则输出0。
Input
第一行两个数n,m。
第二行n个数,a[i]。
接下来m行,每行两个数l,r,表示询问[l,r]这个区间。
Output
m行,每行对应一个答案。
Sample Input
7 5
1 1 3 2 3 4 3
1 3
1 4
3 7
1 7
6 6
Sample Output
1
0
3
0
4
HINT
【数据范围】
n,m≤500000
Solution:
求区间出现次数超过一半的数,算是一道比较经典的题吧。
这个小问题有 O(n) 解法:
维护一个当前出现次数最多的数与它的个数,如果下一个数是它,则 cnt ++,否则 cnt –,减为0之后就放弃它,那么最后留下的那个数就是求的数了。
#include<stdio.h>
int main(){
int n,pos,cnt,x;
scanf("%d",&n);
scanf("%d",&pos);cnt=1;
for(int i=2;i<=n;i++){
scanf("%d",&x);
if(x==pos)cnt++;
else{
if(cnt==0){
cnt=1;
pos=x;
}else cnt--;
}
}
printf("%d\n",pos);
return 0;
}
于是就可以用线段树(或倍增或分块)记录这两个信息,合并得到解了。复杂度 O(nlogn) 。
当然,这题也可以直接用主席树做,而且也并不慢(代码也短),复杂度 O(nlogn) :
#include<stdio.h>
#include<ctype.h>
#define M 500005
#define MLOGM 15000005
int cnt[MLOGM],tot,Lson[MLOGM],Rson[MLOGM],tp[M];
void Rd(int &res){
char c;res=0;
while(c=getchar(),!isdigit(c));
do{
res=(res<<1)+(res<<3)+(c^48);
}while(c=getchar(),isdigit(c));
}
void Build(int L,int R,int &p){
p=++tot;
cnt[p]=0;
if(L==R)return;
int mid=(L+R)>>1;
Build(L,mid,Lson[p]);
Build(mid+1,R,Rson[p]);
}
void Insert(int L,int R,int x,int op,int &p){
p=++tot;
cnt[p]=cnt[op]+1;
if(L==R)return;
Lson[p]=Lson[op];
Rson[p]=Rson[op];
int mid=(L+R)>>1;
if(x<=mid)Insert(L,mid,x,Lson[op],Lson[p]);
else Insert(mid+1,R,x,Rson[op],Rson[p]);
}
int Query(int L,int R,int x,int op,int p){
if(cnt[p]-cnt[op]<x)return 0;
if(L==R)return L;
int ct=cnt[Lson[p]]-cnt[Lson[op]];
int mid=(L+R)>>1;
if(ct>=x)return Query(L,mid,x,Lson[op],Lson[p]);
else return Query(mid+1,R,x,Rson[op],Rson[p]);
}
int main(){
int n,m,x;
Rd(n);Rd(m);
Build(1,n,tp[0]);
for(int i=1;i<=n;i++){
Rd(x);
Insert(1,n,x,tp[i-1],tp[i]);
}
while(m--){
int L,R;
Rd(L);Rd(R);
printf("%d\n",Query(1,n,(R-L+1)/2+1,tp[L-1],tp[R]));
}
return 0;
}