基于Transformer的情感分类和机器翻译研究---学生作品_Xin Luo

本文探讨了基于Transformer的情感分类方法,针对自然语言处理中的情感分析任务,通过深入研究Transformer的结构和自注意力机制,优化模型性能。实验表明,Transformer在情感分类任务中表现出色,为深度学习在情感分析领域的应用提供了实证支持。
摘要由CSDN通过智能技术生成

目录

引言

1.1研究背景与目的

1.2研究现状

模型/方法

2.1基本结构

2.2 Transformer的输入

2.3自注意力机制

2.4 Self-Attention 的输出

2.5 Transformer 总结

实验

3.1  实验环境

3.2  实验过程与结果

3.4  实验结果与分析

结束语

4.1遇到的问题与解决方法

4.2心得体会

参考文献


摘  要: 本研究旨在探索基于Transformer的情感分类方法,以提高自然语言处理中情感分析任务的准确性和鲁棒性。情感分类在社交媒体分析、产品改进、舆情监测等领域具有广泛应用,而Transformer模型由于其出色的自然语言理解能力而备受瞩目。在研究中,我们深入研究了Transfomer的策略,还进行了大规模搜索和模型选择,以优化性能。

关键词:情感分析,卷积神经网络,自然语言处理

  1. 引言

1.1研究背景与目的

近年来,随着社交媒体、电子商务和在线评论等互联网应用的广泛普及,大量的文本数据源源不断地涌现出来。这些文本数据包含了丰富的情感信息,如用户对产品的评价、政治演讲中的态度、社交媒体上的情感表达等。因此,情感分类成为自然语言处理领域中一个备受关注的问题。随着大数据时代的来临,越来越多的线上虚拟平台开始 关注文本中包含的情感内容,因为这些内容对当今的消费者、企业和其他方面起着至关重要的作用 [1-2]。有研究表明,人的 情感表现可以根据当时的面部特征进行分类,包括:幸福、恐 惧、愤怒、悲伤、惊讶和厌恶,这些主要的情感特征同样可以从文本数据中提取出来。

Liu[3]将情感分析定义为“人们对实体、个人、问题、事件、主题及它们属性的意见、评价、态度和情感 的计算研究。”消费者们所表达的意见、评价、态度和情感是分析其意图和决策的基础[4-5]。文本情感分类作为自然语言处理的研究热点,在舆情分析、用户画像和推荐系统中有较广泛的应用。

情感分类的目标是自动地将文本数据分为不同的情感类别,如积极、消极、中性等,以便进一步分析用户情感倾向、产品评价以及社交舆情等信息。这不仅有助于企业改进产品和服务,还有助于政府了解公众的情感态度,以制定更加贴近民心的政策。

1.2研究现状

在情感分类领域,深度学习技术已经取得了令人瞩目的成就。其中,基于Transformer架构的模型,如BERT(Bidirectional Encoder Representations from Transformers)、GPT(Generative Pre-trained Transformer)等,由于其强大的自然语言理解和表示能力,成为了主要的研究方向。这些模型可以学习到文本数据的高级抽象表示,从而在情感分类任务中取得了极高的性能。然而,尽管Transformer模型在情感分类任务中表现出色,但仍然存在一些挑战和问题,例如样本不平衡、跨域情感分类等。

模型/方法

Transformer由论文《Attention is All You Need》提出,现在是谷歌云TPU推荐的参考模型。论文相关的Tensorflow的代码可以从GitHub获取,其作为Tensor2Tensor包的一部分。哈佛的NLP团队也实现了一个基于PyTorch的版本,并注释该论文。

2.1基本结构

下图是 Transformer 用于中英文翻译的整体结构:

图1 Transformer 的整体结构,左为Encoder和右为Decoder

Transformer 由 Encoder 和 Decoder 两个部分组成,Encoder 和 Decoder 都包含 6个 block。

2.2 Transformer的输入

上图 Decoder 接收了 Encoder 的编码矩阵 C,然后首先输入一个翻译开始符 "<Begin>",预测第一个单词 "I";然后输入翻译开始符 "<Begin>" 和单词 "I",预测单词 "have",以此类推。这是 Transformer 使用时候的大致流程,接下来是里面各个部分的细节。

图2 Transformer 的输入表示

2.3自注意力机制

图3 Transformer Encoder 和 Decoder

上图是论文中 Transformer 的内部结构图,左侧为 Encoder block,右侧为 Decoder block。红色圈中的部分为 Multi-Head Attention,是由多个 Self-Attention组成的,可以看到 Encoder block 包含一个 Multi-Head Attention,而 Decoder block 包含两个 Multi-Head Attention (其中有一个用到 Masked)。Multi-Head Attention 上方还包括一个 Add & Norm 层,Add 表示残差连接 (Residual Connection) 用于防止网络退化,Norm 表示 Layer Normalization,用于对每一层的激活值进行归一化。

因为 Self-Attention是 Transformer 的重点,所以我们重点关注 Multi-Head Attention 以及 Self-Attention,首先详细了解一下 Self-Attention 的内部逻辑。

图4 Self-Attention 结构

上图是 Self-Attention 的结构,在计算的时候需要用到矩阵Q(查询),K(键值),V(值)。在实际中,Self-Attention 接收的是输入(单词的表示向量x组成的矩阵X) 或者上一个 Encoder block 的输出。而Q,K,V正是通过 Self-Attention 的输入进行线性变换得到的。

Self-Attention 的输入用矩阵X进行表示,则可以使用线性变阵矩阵WQ,WK,WV计算得到Q,K,V。计算如下图所示,注意 X, Q, K, V 的每一行都表示一个单词。

图5 Q, K, V 的计算

2.4 Self-Attention 的输出

得到矩阵 Q, K, V之后就可以计算出 Self-Attention 的输出了,计算的公式如下:

图6 Self-Attention 的输出

公式中计算矩阵QK每一行向量的内积,为了防止内积过大,因此除以dk的平方根。Q乘以K的转置后,得到的矩阵行列数都为 nn 为句子单词数,这个矩阵可以表示单词之间的 attention 强度。下图为Q乘以KT1234 表示的是句子中的单词。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值