Tensorflow无法使用CUDA_VISIBLE_DEVICES参数进行GPU加速

Tensorflow无法使用GPU卡加速

问题所在

笔者的电脑是笔记本,有一块1050Ti的NVIDIA显卡,遇到两次无法使用GPU的命令来加速程序运行的问题。

即使安装正确的NVIDIA驱动,命令语句完整

错误有些低级。😅 😅 😅

tdT4ot.png

图中的是GPU的编号。

加速方法

经查询发现两种GPU加速的方法

第一种:

import os
os.environ['CUDA_VISIBLE_DEVICES'] = "0"

在调用Tensorflow库函数之前设置这条语句,表明要使用GPU0卡来加速,对应上图的编号。可以指定多块卡!!

第二种:

CUDA_VISIBLE_DEVICES=0 python main.py

在命令行执行python程序的时候前面加参数

解决方案

原因所在:
忘记安装tensorflow-gpu包或者tensorflow-gpu包的版本与tensorflow不匹配!!!

正确的操作手段:

  • 安装相同版本的tensorflowtensorflow-gpu

  • pip install tensorflow==1.14.0 pip install tensorflow-gpu==1.14.0

大功告成!!

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值