机器学习——L1和L2正则化

正则化(Regularization)

训练机器学习模型的要点之一是避免过拟合。如果发生过拟合,模型的精确度会下降。这是由于模型过度尝试捕获训练数据集的噪声。噪声,是指那些不能代表数据真实特性的数据点,它们的生成是随机的。学习和捕捉这些数据点让你的模型复杂度增大,有过拟合的风险。

正则化是一种回归的形式,它将系数估计(coefficient estimate)朝零的方向进行约束、调整或缩小。也就是说,正则化可以在学习过程中降低模型复杂度和不稳定程度,从而避免过拟合的危险。

一个简单的线性回归关系如下式。其中 Y 代表学习关系,β 代表对不同变量或预测因子 X 的系数估计。

Y ≈ β0 + β1X1 + β2X2 + …+ βpXp

拟合过程涉及损失函数,称为残差平方和(RSS)。系数选择要使得它们能最小化损失函数。

初学者如何学习机器学习中的L1和L2正则化

这个式子可以根据你的训练数据调整系数。但如果训练数据中存在噪声,则估计的系数就不能很好地泛化到未来数据中。这正是正则化要解决的问题,它能将学习后的参数估计朝零缩小调整。


机器学习中几乎都可以看到损失函数后面会添加一个额外项,常用的额外项一般有两种,一般英文称作 L1-norm 和 L2-norm,中文称作 L1正则化 和 L2正则化,或者 L1范数 和 L2范数。

L0范数是指向量中非0元素的个数

L1正则化和L2正则化可以看做是损失函数的惩罚项。

所谓『惩罚』是指对损失函数中的某些参数做一些限制。对于线性回归模型,使用L1正则化的模型建叫做Lasso回归,使用L2正则化的模型叫做Ridge回归(岭回归)

下图是Python中Lasso回归的损失函数,式中加号后面一项即为L1正则化项。

下图是Python中Ridge回归的损失函数,式中加号后面一项即为L2正则化项。

一般回归分析中回归ω表示特征的系数,从上式可以看到正则化项是对系数做了处理(限制)。

L1正则化和L2正则化的说明如下:

  • L1正则化是指权值向量ω中各个元素的绝对值之和,通常表示为
  • L2正则化是指权值向量ω中各个元素的平方和然后再求平方根(可以看到Ridge回归的L2正则化项有平方符号),通常表示为

一般都会在正则化项之前添加一个系数,Python中用α表示,一些文章也用λ表示。这个系数需要用户指定。

那添加L1和L2正则化有什么用?下面是L1正则化和L2正则化的作用,这些表述可以在很多文章中找到。

  • L1正则化可以产生稀疏权值矩阵,即产生一个稀疏模型,可以用于特征选择
  • L2正则化可以防止模型过拟合(overfitting);一定程度上,L1也可以防止过拟合

L1和L2正则化的直观理解

稀疏模型与特征选择

上面提到L1正则化有助于生成一个稀疏权值矩阵,进而可以用于特征选择。为什么要生成一个稀疏矩阵?

稀疏矩阵指的是很多元素为0,只有少数元素是非零值的矩阵,即得到的线性回归模型的大部分系数都是0. 通常机器学习中特征数量很多,例如文本处理时,如果将一个词组(term)作为一个特征,那么特征数量会达到上万个(bigram)。在预测或分类时,那么多特征显然难以选择,但是如果代入这些特征得到的模型是一个稀疏模型,表示只有少数特征对这个模型有贡献,绝大部分特征是没有贡献的,或者贡献微小(因为它们前面的系数是0或者是很小的值,即使去掉对模型也没有什么影响),此时我们就可以只关注系数是非零值的特征。这就是稀疏模型与特征选择的关系。


为什么L1正则化可以产生稀疏模型(L1是怎么让系数等于零的)

假设有如下带L1正则化的损失函数:

其中是原始的损失函数,加号后面的一项是L1正则化项,α 是正则化系数。

注意到L1正则化是权值的绝对值之和,J 是带有绝对值符号的函数,因此J 是不完全可微的。

机器学习的任务就是要通过一些方法(比如梯度下降)求出损失函数的最小值。当我们在原始损失函数J0后添加L1正则化项时,相当于对J0做了一个约束。

此时我们的任务变成在L约束下求出取最小值的解。考虑二维的情况,即只有两个权值ω1和ω2,此时 对于梯度下降法,求解的过程可以画出等值线,同时L1正则化的函数L也可以在ω1ω2二维平面上画出来,如图,

图1 L1正则化

图中等值线是的等值线,黑色方形是L函数的图形,在图中,J0等值线和L图形首次相交的地方就是最优解。上图中J0与L在L的一个顶点处相交,这个顶点就是最优解。注意到,这个顶点值。可以直观想象,因为L 函数有很多『突出的角』(二维情况下四个,多维情况下更多),J0  与这些角接触的机率会远大于与L 其它部位接触的机率,而在这些角上,会有很多权值等于0,这就是为什么L1正则化可以产生稀疏模型,进而可以用于特征选择。

而正则化前面的系数α,可以控制L图形的大小。α越小,L图形越大;α越大,L图形越小,可以小到黑色方框只超出原点范围一点点,这是最优点的值中的ω可以取到很小的值。

 

L2正则化和过拟合

假设有如下带L2正则化的损失函数:

同样可以画出他们在二维平面上的图形,如下:

图2 L2正则化

二维平面下L2正则化的函数图形是个圆,与方形相比,被磨去了棱角。因此J0与L相交时,使得ω1或者ω2等于零的几率小了很多,这就是为什么L2正则化不具有稀疏性的原因。

 

拟合过程中通常都倾向于让权值尽可能小,最后构造一个所有参数都比较小的模型。因为一般认为参数值小的模型比较简单,能适应不同的数据集,也在一定程度上避免了过拟合现象。可以设想一下对于一个线性回归方程,若参数很大,那么只要数据偏移一点点,就会对结果造成很大的影响;但如果参数足够小,数据偏移得多一点也不会对结果造成什么影响,专业一点的说法是『抗扰动能力强』

那为什么L2正则化可以获得值很小的参数?

以线性回归中的梯度下降法为例。假设要求的参数为θ,是我们的假设函数。线性回归一般使用平方差损失函数。单个样本的平方差是,如果考虑所有样本,损失函数是对每个样本的平方差求和,假设有m个样本,线性回归的代价函数如下,为了后续处理方便,乘以一个常数

在梯度下降算法中,需要先对参数求导,得到梯度。梯度本身是上升最快的方向,为了让损失尽可能小,沿梯度的负方向更新参数即可。

对于单个样本,先对某个参数θj求导:

注意到的表达式是,单个样本对某个参数θj求导,最终(3.1)式结果如下:                        

在考虑所有样本的情况,将每个样本对θj的导数求和即可,得到下式:

梯度下降算法中,为了尽快收敛,会沿梯度的负方向更新参数,因此在(3.3)式前添加一个负号,并乘以一个系数α(即学习率),得到最终用于迭代计算参数θj的形式:

其中α是learning rate. 上式是没有添加L2正则化项的迭代公式,如果在原始代价函数之后添加L2正则化,则迭代公式会变成下面的样子:

其中λ就是正则化参数。从上式可以看到,与未添加L2正则化的迭代公式相比,每一次迭代,θj都要先乘以一个小于1的因子,从而使得θj不断减小,因此总得来看,θ是不断减小的。

最开始也提到L1正则化一定程度上也可以防止过拟合。之前做了解释,当L1的正则化系数很小时,得到的最优解会很小,可以达到和L2正则化类似的效果。

 

正则化参数的选择

L1正则化参数

通常越大的λ 可以让代价函数在参数为0时取到最小值。下面是一个简单的例子,假设有如下带L1正则化项的代价函数:

其中x是要估计的参数,相当于上文中提到的ω和θ。注意到L1正则化在某些位置是不可导的,当λ 足够大时可以使得F(x)在x=0时取到最小值。如下图:

L2正则化参数

从公式5可以看到,λ越大,θj 衰减得越快。另一个理解可以参考图2,λ 越大,L2圆的半径越小,最后求得代价函数最值时各参数也会变得很小。
 

参考https://blog.csdn.net/jinping_shi/article/details/52433975

https://www.jiqizhixin.com/articles/2017-11-23-4

这个讲的很好 https://hit-scir.gitbooks.io/neural-networks-and-deep-learning-zh_cn/content/chap3/c3s5ss2.html

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值