PASCAL VOC2012数据集的下载及简单讲解:了解voc数据集的格式 每个文件夹是干嘛的
https://blog.csdn.net/qq_30263737/article/details/114918719
服务器端 linux 下载 voc2007/2012 数据集:
wget http://pjreddie.com/media/files/VOC2012test.tar
wget https://pjreddie.com/media/files/VOCtrainval_11-May-2012.tar
wget https://pjreddie.com/media/files/VOCtrainval_06-Nov-2007.tar
wget https://pjreddie.com/media/files/VOCtest_06-Nov-2007.tar
未完待续:如何服务器端 软链接 解压 如何再咋训练? 需要补充!
在服务器端 下载源码 然后创建文件夹data 如下图方法:
data建立好后,直接第四步 在Pretrained_model文件下,把网址上的预训练模型下载到本地,然后从本地copy在复制到这个文件下。
然后下载数据集:
wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtrainval_06-Nov-2007.tar
wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtest_06-Nov-2007.tar
wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCdevkit_08-Jun-2007.tar
在解压数据集:
tar xvf VOCtrainval_06-Nov-2007.tar
tar xvf VOCtest_06-Nov-2007.tar
tar xvf VOCdevkit_08-Jun-2007.tar
在服务器端 cd到home下在解压 这样解压后就在最外层显示,会自动产生一个VOCdevkit文件夹
接下来是第二步 最关键:软连接的地址
cd 到 data文件下 然后 ln -s 解压出来的voc2007的服务器端地址 VOC2007
最后的VOC2007 相当于在data文件夹下 生成一个这个名字的软连接
还需要自己ls data文件夹 看看有没有这个voc2007 然后在cd voc2007 看看有没有报错 没有就说明对了
记得”cd lib
sh make.sh
编译一下 还有就是服务器显卡的设置 第六步 我的是rtx3090 所以需要改 参考下面地址更改:
http://arnon.dk/matching-sm-architectures-arch-and-gencode-for-various-nvidia-cards/
参考:
https://gitcode.net/mirrors/jwyang/faster-rcnn.pytorch?utm_source=csdn_github_accelerator
https://github.com/guoruoqian/cascade-rcnn_Pytorch
https://github.com/rbgirshick/py-faster-rcnn#beyond-the-demo-installation-for-training-and-testing-models