PASCAL VOC2012数据集的下载及简单讲解

本文详细介绍了如何在服务器端下载并解压PASCAL VOC2012数据集,包括wget命令下载数据集、tar命令解压以及如何创建软链接。此外,还提到了数据集的目录结构和预训练模型的获取,为后续的深度学习模型训练做好准备。
摘要由CSDN通过智能技术生成

PASCAL VOC2012数据集的下载及简单讲解:了解voc数据集的格式 每个文件夹是干嘛的
https://blog.csdn.net/qq_30263737/article/details/114918719

服务器端 linux 下载 voc2007/2012 数据集:
wget http://pjreddie.com/media/files/VOC2012test.tar
wget https://pjreddie.com/media/files/VOCtrainval_11-May-2012.tar

wget https://pjreddie.com/media/files/VOCtrainval_06-Nov-2007.tar
wget https://pjreddie.com/media/files/VOCtest_06-Nov-2007.tar
在这里插入图片描述
未完待续:如何服务器端 软链接 解压 如何再咋训练? 需要补充!
在服务器端 下载源码 然后创建文件夹data 如下图方法:
在这里插入图片描述
在这里插入图片描述
data建立好后,直接第四步 在Pretrained_model文件下,把网址上的预训练模型下载到本地,然后从本地copy在复制到这个文件下。
在这里插入图片描述
然后下载数据集:

wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtrainval_06-Nov-2007.tar
wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtest_06-Nov-2007.tar
wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCdevkit_08-Jun-2007.tar
在解压数据集:
tar xvf VOCtrainval_06-Nov-2007.tar
tar xvf VOCtest_06-Nov-2007.tar
tar xvf VOCdevkit_08-Jun-2007.tar
在服务器端 cd到home下在解压 这样解压后就在最外层显示,会自动产生一个VOCdevkit文件夹
接下来是第二步 最关键:软连接的地址
cd 到 data文件下 然后 ln -s 解压出来的voc2007的服务器端地址 VOC2007
在这里插入图片描述

最后的VOC2007 相当于在data文件夹下 生成一个这个名字的软连接
还需要自己ls data文件夹 看看有没有这个voc2007 然后在cd voc2007 看看有没有报错 没有就说明对了
记得”cd lib
sh make.sh
编译一下 还有就是服务器显卡的设置 第六步 我的是rtx3090 所以需要改 参考下面地址更改:

http://arnon.dk/matching-sm-architectures-arch-and-gencode-for-various-nvidia-cards/
在这里插入图片描述

参考:
https://gitcode.net/mirrors/jwyang/faster-rcnn.pytorch?utm_source=csdn_github_accelerator
https://github.com/guoruoqian/cascade-rcnn_Pytorch
https://github.com/rbgirshick/py-faster-rcnn#beyond-the-demo-installation-for-training-and-testing-models

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zqx951102

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值