SAR成像系列:【12】层析合成孔径雷达(层析SAR,Tomographic SAR,TomoSAR)

自1995年Knaell为解决曲线SAR成像结果中的强旁瓣问题,将二维计算机断层(Computed Tomography)成像技术扩展到三维空间,并通过投影切片理论和后向投影算法获得了雷达成像三维空间的点响应函数,从而为分析三维成像分辨率和层析成像性能提供了依据。Knaell 的研究为多基线SAR 层析成像的研究提供了初步框架并奠定了理论基础。

1999年,Reigber等人从应用角度证明了SAR层析三维成像的可行性,利用机载E-SAR实验雷达系统对德国Oberpfaffenhofen机场区域进行多次飞行成像试验,通过设计14 条间隔20米的飞行轨迹,获得了基于傅立叶变换的三维成像结果。2004 年,Fornaro等人将层析成像技术扩展到星基平台,利用那不勒斯区域的30个ERS1-2航过数据,实现了多基线星载SAR的三维剖面成像,理论分辨率达到22米。

2009年Budillon等人将压缩感知理论引入到SAR层析成像中,从理论上论证了压缩感知在多基线SAR三维成像中的优势和潜力。随后,2010年提出了SL1MMER重构算法,并实心了TerraSAR-X实测数据的三维成像。

(1)层析SAR信号模型

 层析SAR是通过多条高度向基线实现的,高度向基线可通过分时多次航过或同时多个天线实现。多基线空间模型如下图。

 这里所谓的三维是指:距离维、方位维和垂直距离维(LOS).垂直距离维是指途中的s方向,它与地面垂直向有个固定夹角。

它的多基线回波信号为:

 trta分别表示快时间和慢时间;γA为后向散射系数(通常表示为位置函数,由于它对成像分辨率没有影响,这里将其写为常数);aa(·)为方位包络,ar(tr)=rect(tr/T)为距离包络,其中T为脉冲持续时间;λ为发射信号波长;Kr为线性调频率;c表示光速;为雷达到散射点ArA, xA, sA)的距离,其中rA为斜距向坐标,xA为方位向坐标,sA为高度向坐标。RA的泰勒展开为

 因此,回波信号可写为

 由上式可知,多基线SAR的回波为一个关于快时间、慢时间和三维空间基线的多维信号。在多基线SAR联合信号处理时,采样数据为同一地区的方位维数相同的一段数据,在方位数据对齐时消除方位基线对成像的影响。

 (2)压缩感知算法

信号的稀疏化、压缩测量和精确重构是构成压缩感知理论框架的主要部分。压缩感知技术对信号进行重构时,先对高维的稀疏信号进行非相关编码测量,实现采样和压缩两个步骤,然后在恢复信号时利用重构算法同时实现信号的解压与重建,大大降低测量系统的复杂度。

①信号的稀疏化

信号的稀疏表示是为了得到信号更为简洁和直接的表示方式,对于一般自然的信号本身很难保证稀疏性,需要一个正交稀疏基、过完备字典或自适应字典对信号进行稀疏化。即存在一组可以对尺度为N的信号X线性分解。

 ②压缩测量

对信号进行压缩测量的物理意义可以理解为利用M个传感器对N维的原始信号进行观测,得到传感器的测量值Y,采用最优化方法能够从观测值Y中重构出原始信号X。通常,为了得到正确的测量值,需要测量矩阵\Phi和稀疏基\Psi互不相关。其中,测量矩阵参与到压缩感知的整个过程,它的选择关系到信号压缩程度和重构精度。对于可压缩信号X=\Phi S,如果有满足下式就说明\Phi具备约束等距条件(Restricted Isometry Property,RIP),那么通过Klog_2(N/K)次采样便可将S的K个最大值精确重构,RIP条件等价于\Phi\Psi不相关。对于测量矩阵,常见的有高斯矩阵、伯努利矩阵和傅里叶矩阵等。

 ③精确重构

信号的精确重构是压缩传感理论的灵魂,其算法主要有贪婪算法,如正交匹配追踪算法(OMP);凸松弛算法,如梯度投影算法(GPSR);以及它们的改进算法等。

贪婪算法可描述为一种利用最小二乘不断迭代的算法,效率较高,但是其重构精度和抗噪性能有待提高。

凸松弛算法则是将病态求解范数问题转化为求解范数问题。通过梯度投影法得到S的解。

 利用凸松弛算法求解稀疏性问题,具有较强的鲁棒性。

(3)高度向聚焦

在完成多基线SAR距离和方位聚焦(各个基线的回波二维成像)之后,剩余的空间域信号形式如下

 其中,\delta (.)为二维聚焦后的单位冲激函数,exp(\frac{-j2\pi(B_{sn}-s_p)^2}{\lambda (r_p-B_{rn})})为目标高度位置相关项,高度向基线分量B_{sn}是实现高度向重构的关键,它决定了重构算法中欠定方程组中方程的个数。根据高度位置相关项,构建高度向稀疏基为:

 因此,高度向压缩感知聚焦步骤如下:

第一步:选定最近的距离门信号,构建高度向稀疏基,将式中的R_{ref}用此距离门的的斜距代替;

第二步:遍历此距离门内的各个方位单元,为每一个距离-方位单元的空域信号执行一次压缩感知重构算法;

第三步:将压缩感知重构结果写入相应的距离-方位-高度位置;

第四步:选定下一个距离门,重复第二步和第三步,直到完成全部距离门的遍历操作。

(4)仿真实验

仿真参数如下表所示。

参数名称

参数数值

载频

5.3 GHz

平台高度

800 Km

方位速度

7100 m/s

场景中心距

890 Km

发射带宽

30 MHz

脉冲宽度

30 μs

天线孔径

10 m

成像场景:

 二维成像结果(二维成像算法采用RD算法):

高度向聚焦结果(方位位置为0处的距离向切片):

 下面是利用层析成像反演某地区的DEM结果。

真实DEM:

层析反演DEM:

内容概要:本文详细介绍了合成孔径雷达SAR)及其三维成像技术——层析SARTomographic SAR, Tomo-SAR)。SAR是一种安装在飞行平台上的雷达系统,通过平台移动来提高图像分辨率。传统SAR仅能获取二维信号,而Tomo-SAR利用多个二维信号重建三维模型。文章首先回顾了SAR的历史和发展,接着解释了Tomo-SAR的工作原理、数学建模以及预处理步骤,包括辐射校准、图像配准和去噪等。文中还比较了几种常见的谱估计方法,如常规波束形成法、非线性最小二乘法、干涉SAR、奇异值分解(SVD)和基于压缩感知的SL1MMER算法。最后,作者对各种方法的优缺点进行了总结,并展望了未来的研究方向。 适合人群:具备雷达遥感基础知识或从事地球观测、环境监测、地理信息系统等领域研究的技术人员和科研人员。 使用场景及目标:①理解SAR和Tomo-SAR的基本原理和技术细节;②掌握SAR数据预处理和后处理的方法;③选择合适的谱估计算法进行高精度三维地形重建;④探索新的信号处理技术和应用领域,如植被监测、城市建筑高度测量等。 其他说明:本文不仅提供了理论分析,还结合实际案例展示了不同算法的效果对比。文中提到的SL1MMER算法特别适用于多散射体单元的高精度重建,但计算成本较高。对于大规模数据处理,SVD可能是更好的选择。此外,压缩感知方法的应用为减少数据量和提高重建效率提供了新思路。
### 回答1: 在CSDN上可以找到许多关于三维SAR成像的代码。三维SAR成像合成孔径雷达SAR)在空间和时间维度上的扩展应用。其目标是通过利用SAR多普勒频移信息和距离分辨率信息,从飞机或航天器采集的多个SAR数据帧中重建三维目标场景。 在CSDN上,我们可以找到一些三维SAR成像的源代码,这些代码提供了实现不同成像算法的基本框架。例如,我们可以找到一些基于时域波束成像的代码,该方法将多个SAR数据帧进行融合,然后应用波束成像算法进行目标重建和成像。 此外,还有一些基于后向投影(Backprojection)的成像算法的代码,后向投影算法通过将每个SAR数据帧与成像域的每个像素进行匹配,然后进行叠加以获取三维目标重建。 在CSDN上还可以找到一些重建三维移动目标场景的代码,该代码通过考虑飞机或航天器的运动信息,包括平台速度和姿态,从而实现高效而准确的运动补偿。 总之,在CSDN上可以找到各种三维SAR成像的代码,这些代码提供了实现不同成像算法和场景重建方法的基本框架,为科研人员和工程师提供了学习和研究三维SAR成像的有力工具。 ### 回答2: 在CSDN上可以找到许多用于三维SAR成像的代码。三维SAR成像是一种利用合成孔径雷达SAR)数据进行三维地物目标定位和成像的技术。以下是关于三维SAR成像代码的一些介绍和示例: 1. SARPROZ SARPROZ是一种功能强大的用于SAR数据处理和三维成像的开源软件,其支持各种不同的SAR数据格式和处理方法。在CSDN上可以找到与SARPROZ相关的教程和代码示例,可以帮助用户学习和使用该软件进行三维SAR成像。 2. PULSAR PULSAR是另一种用于SAR数据处理和三维成像的开源软件,其特点是简单易用和高效率。在CSDN上可以找到与PULSAR相关的代码示例和实现,可以帮助用户理解和应用该软件进行三维SAR成像。 3. MATLAB MATLAB是一种广泛应用于科学与工程领域的编程语言,也可以用于三维SAR成像。在CSDN上可以找到许多使用MATLAB进行三维SAR成像的代码示例,包括基于多通道SAR数据的目标定位和成像方法。 4. Python Python是另一种常用的编程语言,也可以用于三维SAR成像。在CSDN上可以找到许多使用Python进行三维SAR成像的代码示例,包括基于不同算法和数据处理方法的实现。 总之,CSDN是一个非常有用的平台,可以找到许多关于三维SAR成像的代码示例和教程,可以帮助用户理解和应用这一技术。无论是使用SARPROZ、PULSAR、MATLAB还是Python,都可以在CSDN上找到相关的资料和代码,帮助用户进行三维SAR成像的研究和开发。 ### 回答3: 三维SAR成像是一种利用合成孔径雷达(Synthetic Aperture Radar,SAR)技术实现对地物进行立体成像的方法。该技术通过在不同位置获取多个SAR图像,并将其组合起来,可以获取地表目标的立体信息,实现三维重建。 在CSDN上可以找到许多相关的三维SAR成像代码参考。首先,我们可以进入CSDN的官方网站,然后在搜索栏中输入"三维SAR成像代码"来获取相关的搜索结果。 其中,我们可以选择合适的代码进行参考学习。一般来说,这些代码会基于主流的编程语言(如MATLAB、Python等)编写。我们可以根据自己的编程语言偏好来选择适合的代码。 然后,我们需要阅读并理解这些代码,了解其具体的实现过程和算法原理。这些代码通常包括数据预处理、信号处理、SAR成像和可视化等步骤。理解代码中的各个函数和参数设置是非常重要的。 最后,我们可以根据自己的需求进行代码优化和修改,以使其适用于自己的应用场景。这可能需要一些专业的知识和经验,但通过阅读代码和相关文档,我们可以逐渐掌握三维SAR成像技术,并进行进一步的开发和改进。 总之,在CSDN上可以找到一些三维SAR成像代码的参考,我们可以根据自己的需求选择适合的代码进行学习和研究,进一步提升自己在这一领域的技术水平。
评论 21
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值