SAR成像系列:【3】合成孔径雷达(SAR)的二维回波信号与简单距离多普勒(RD)算法 (附matlab代码)

合成孔径雷达发射信号以线性调频信号(LFM)为基础,目前大部分合成孔径雷达都是LFM体制,为了减轻雷达重量也采用线性调频连续波(FMCW)体制;为了获得大带宽亦采用线性调频步进频(FMSF)体制。

(1)LFM信号

LFM的主要特点在于可以使载波的瞬时频率随调制信号的变化而变化,当其频率线性增加时,称为正调频;当其频率线性减少时,称为负调频。LFM信号的幅度频谱存在部分起伏现象,这是由菲涅尔积分造成的;信号的频谱并不完全限制在-B/2~B/2之内,随着时宽带宽积的增大,信号的幅频特性越接近矩形,顶部起伏也会减小。LFM解决了探测距离和分辨率之间的矛盾,在雷达和制导武器上得到广泛应用。LFM的时域表示为:

s(t)=rect(\frac{t}{T})exp(j\pi Kt^{2})

其中,T为时宽,K为调频率,rect为矩形窗。

求LFM信号的频谱需要对其作FFT,得到:

S(f)= \int_{-\infty }^{\infty}rect(\frac{t}{T})exp(j\pi Kt^{2})exp(-j2\pi ft)dt

存在指数二次项积分,需采用驻定相位原理(POSP)求解,驻定相位点为:

t(f)=\frac{f}{K}

因此求得频谱为

S(f)=rect(\frac{f}{KT})exp(-j\pi \frac{f^{2}}{K})

LFM的时域图和频谱图如下(附matlab代码)。

 

 %%%%%%%%% 线性调频信号LFM%%%%%%%%
%% LFM时域波形
clc; clear; close all;
f0 = 0;    %雷达中心频率
T = 3e-7;  %脉宽
B = 3e8;    %带宽
fs = 2*B; %采样率
Ts = 1/fs; %采样时间
N = T/Ts; %采样数
k = B/T;   %调频率
t = linspace(-T/2,T/2,N);%时间
y = exp(1j*(2*pi*f0*t + pi*k*t.^2));%LFM信号
figure;
plot(t*1e6,real(y));xlabel('时间(us)');ylabel('幅度');
title('LFM信号时域波形(实部)');
figure;
plot(t*1e6,imag(y));xlabel('时间(us)');ylabel('幅度');
title('LFM信号时域波形(虚部)');
grid on; axis tight;
%% LFM频谱图
S = fftshift(fft(y));     %频谱
f = linspace(-fs/2,fs/2,N);%频率轴
figure;
plot(f*1e-6,abs(S)./max(max(abs(S))));
xlabel('频率(MHz)')
ylabel('归一化频谱幅度');
title('LFM信号频谱');

 (2)快时间与慢时间

在合成孔径雷达成像中,快时间和慢时间是一个相对的概念。在工程上,快时间指的是脉内时间变化,慢时间是脉间时间变化。

雷达发射信号是以脉冲的形式发射的,发射频率称为脉冲重复频率(PRF),PRF的设定是根据雷达的功能和性能确定的。从几K到几十K,甚至几百K。一般星载SAR的PRF为几K,每一个脉冲都有一个时间戳,这个连续的时间戳合起来叫做慢时间。如下图t1到t6为慢时间标记。

 雷达发射脉冲信号的周期为T,T=1/PRF。雷达有效信号能量时间占一个雷达信号周期的比例称为占空比,也就是说发射的有效信号不总是充满整个雷达信号周期。周期内的有效能量部分的时间称为快时间,一般用\tau来表示。

这种慢时间和快时间在主观上是交替进行的,慢时间沿方位向播放,快时间沿距离向播放,这就形成了SAR的“停-走-停”成像模式。

(3)SAR的二维回波信号

在低轨星载和机载SAR使用中,回波是以“停-走-停”的方式录取的,它是以快时间轴和慢时间轴构成的二维平面。如下图所示。

 合成孔径雷达一般发射的是LFM信号,快时间的数学表达式为

s( \tau )=rect(\frac{\tau }{T_{r}})e^{j2\pi f_{c}\tau +\frac{1}{2}K_{r}\tau ^{2}}

fc为载频,Kr为调频率,rect(.)为脉冲包络。假设,一个散射系数为A0的点目标在雷达发射波束内,距离雷达的距离为R,则雷达接受到的回波是发射信号与目标散射系数的卷积,因此接收信号为(忽略后向散射引起的相位变化):

s_{r}( \tau )=A_{0}rect(\frac{\tau -\frac{2R}{c}}{T_{r}})e^{j2\pi f_{c}(\tau -\frac{2R}{c})+\frac{1}{2}K_{r}(\tau -\frac{2R}{c})^{2}}

上式看起来是一个距离向一维回波,但是它的慢时间包含在R中。由于录取平台是运动的,因此R会随着平台位置的变化而改变,如下图所示。

 慢时间在t1-t11时刻距离目标的R1-R11一直发生变化。R关于慢时间的表达式为(正侧式SAR为例):

R_{t}=\sqrt{R_{0}^{2}+(V_{a}t)^{2}}

R0为雷达到目标的最短参考距离。将R(t)带入回波中,得到SAR的二维回波信号:

s_{r,a}( \tau ,t)=A_{0}rect(\frac{\tau -\frac{2R_{t}}{c}}{T_{r}})\omega (t-t_{c})e^{j2\pi f_{c}(\tau -\frac{2R_{t}}{c})+\frac{1}{2}K_{r}(\tau -\frac{2R_{t}}{c})^{2}}

\omega (.)为方位信号包络。对Rt进行泰勒展开取近似得到

R_{t}=R_{0}+\frac{(V_{a}t)^{2}}{2R_{0}}

带入到二维回波信号中,整理得到:

s_{r,a}( \tau ,t)=A_{0}rect(\frac{\tau -\frac{2R_{t}}{c}}{T_{r}})\omega (t-t_{c})exp(\frac{-j4\pi R_{0}}{\lambda })exp(-j\pi K_{a}t^{2})exp(j\pi K_{r}(\tau -\frac{2R_{t}}{c})^{2})

其中,Ka为方位向多普勒调频率:

K_{a}\approx \frac{2V_{a}^{2}}{\lambda R_{0}}

由回波信号可以看到,在方位向和距离向分别存在两个线性调频信号。

(4)正侧视距离多普勒(RD)算法

一个简单的距离多普勒算法包括距离压缩、距离徙动矫正、方位压缩。其中距离压缩和方位压缩通过LFM匹配滤波或去斜处理实现。距离徙动矫正是补偿掉不同方位位置回波引起的Rt的变化,若距离徙动远小于距离分辨率,则不需要进行距离徙动矫正,RD成像仅剩下距离压缩和方位压缩,且这两步操作没有先后之分。

把二维回波信号分解,仅考虑相位项,距离向的对应LFM信号为

s'_{r, \tau }=exp(j\pi K_{r}(\tau -\frac{2R_{t}}{c})^{2})

方位向的对应LFM信号为

s'_{a}=exp(-j\pi K_{a}t^{2})

因此,简单RD算法的算法流程如下图所示:

 算法中的距离参考信号为

s_{r,ref}=\omega _{r}(\bar{\tau})exp(-j\pi K_{r}\bar{\tau} ^{2} )

其中\omega (.)为距离包络,\bar{\tau}为距离向参考时间(快时间)。

方位参考信号为

s_{a,ref}=\omega _{a}(\bar{\tau})exp(j\pi K_{a}\bar{t} ^{2} )

经过距离压缩和方位压缩,得到简单RD算法的成像效果。5个点目标未进行RCM的matlab代码如下:

%% RD算法   含距离徙动矫正(最近邻插值和sinc插值)
%%%
%%%Authed  by Piaobo 氵茶花彡
clear;close all;clc;
SNR = -15;                          % 信噪比

c=3e8;
f0 = 9.875e9;                     % 雷达工作频率Hz
lamda = c/f0;                 % 雷达工作波长m
H = 1000;                           % 高度
Yc=2000;                         % 成像区域中线
R0 = sqrt(Yc^2+H^2);       % 中心斜距m

theta = asind(H/R0);          % 下视角
Br=50e6;                           % 带宽
Vr = 200;                           % 雷达有效速度m/s
Tr =5e-6;                          % 脉冲持续时间s
Kr = Br/Tr;                           % 线性调频率
Fr = 1.2*Br;                          % 距离采样频率,1.2为过采样率
Ts = 1/Fr;                             % 距离采样时间间隔s

Nk = ceil((2 * 800/ c + Tr) / Ts);  %距离向前后500m
Nf = 2^nextpow2(Nk);                % 距离向的采样点个数
tf_ori = [-Nf/2:1:Nf/2-1]*Ts;                     % 距离向采样时序
tf = [-Nf/2:1:Nf/2-1]*Ts+2*R0/c;                  % 实际快时间采样值

La = 6;                                                % 等效天线尺寸
Ls = R0*lamda/La;                   % 合成孔径时长度m,Ls=(0.886*R0*lamda)/(La*cos(Theta))
% Ta = Ls/Vr;                                         % 目标照射时间s
Ta = 0.8;                                         % 目标照射时间s
Ls =Ta*Vr;
Ka = -2 * Vr^2 / (lamda * R0);                          % 方位多普勒调频率Hz
Ba=abs(Ka*Ta);                                             % 多普勒频率调制带宽
PRF = ceil(1.8*Ba);                                       % 方位采样率Hz
% PRF = 1000;                                       % 方位采样率Hz
PRT = 1/PRF;                                      % 方位向采样时间间隔s
Ns = 2^nextpow2((80/Vr+Ta)*PRF);             % 方位向的采样点个数 左右各100m
ts = [-Ns/2 : (Ns/2 - 1)] * PRT;                         % 方位向采样时序
% 理论分辨率
rho_r=c/2/Br;
% rho_a=Vr*PRT;
rho_a=La/2;

% 目标参数
X0 = [-20 20 0 -20 20];                         % 目标1位置坐标
Z0 = [0 0 0 0 0];
Y0 = [Yc+50 Yc+50 Yc Yc-50 Yc-50];
NT=size(X0,2);

%%================================================================
%%生成回波信号
Sb = zeros(Ns,Nf);
sigma = 1; % 回波幅度
for ii=1:NT
    R = sqrt((Vr*ts-X0(ii)).^2+Y0(ii).^2+(Z0(ii)-H).^2);
    tau = 2*R/c;
    Dfast = ones(Ns,1) * tf - tau' * ones(1, Nf);
    phase = pi*Kr*Dfast.^2 - (2 * pi *f0 * tau') * ones(1,Nf);                                           
    Sb = Sb+sigma * exp(1j*phase) .* (abs(Dfast) <= Tr/2) .* ((abs(ts * Vr-X0(ii)) <=Ls/2)' * ones(1,Nf));
end
% Sb = awgn(Sb,SNR,0);                                % 回波加噪

figure
imagesc(real(Sb)),colormap(gray);

%% 距离向压缩
x0 = ones(Ns,1)*(exp(-1j*pi*Kr*(tf_ori).^2).* (abs(tf_ori) <= Tr/2)); % 距离向匹配函数
fftx1 = fftshift(fft(fftshift(x0.'))).'; % 距离向匹配函数FFT
fftSb = fftshift(fft(fftshift(Sb.'))).'; % 原信号FFT
y0 = fftshift(ifft(fftshift((fftSb.*fftx1).'))).';  % 距离向压缩后信号
%显示
ta = ts * Vr;                                     % 方位向的距离序列
tr = tf * c / 2;                                  % 快时间采样对应的距离域(单程距)
% figure;imagesc(tr,ta,abs(y0));colormap(gray);
% axis([tr(Nf/2-Nf/2^8),tr(Nf/2+Nf/2^8),ta(1),ta(end)]);
% xlabel('距离单元(m)');ylabel('方位单元(m)');title('距离向压缩');
figure;imagesc(abs(y0));colormap(gray);
xlabel('距离向');ylabel('方位向');title('距离向压缩');
 %% 距离徙动矫正1    SINC插值
 

%% 距离徙动矫正2    最近邻插值
 

%% 方位向压缩
ffty0 = fftshift(fft(fftshift(y0))); % 距离向压缩后信号FFT
% x1 = exp(-1j*4*pi/lamda*sqrt((X0-Vr*ts-Bx(1)).^2+(Y0)^2+(Z0-Bz(1)-H)^2))'*ones(1,Nf); % 方位向匹配函数
x1 = exp(1j*pi*(ts.^2)*Ka)'*ones(1,Nf); % 方位向匹配函数
fftx1 = fftshift(fft(fftshift(x1))); % 方位向匹配函数FFT
y1 = fftshift(ifft(fftshift((ffty0.*fftx1)))); % 方位向压缩后信号

figure;imagesc(abs(y1));colormap(gray);
xlabel('距离向');ylabel('方位向');title('方位向压缩');
% xlabel('Range(m)');ylabel('Azimuth(m)');title('Uncompensated');
成像结果如下:

原始信号实部:

原始信号虚部:

距离压缩结果:

方位压缩成像结果(此图未进行距离徙动补偿,非中心目标出现散焦):

 中心目标的db图(边上有其他目标的扩散能量进来):

### 回答1: 合成孔径雷达(Synthetic Aperture Radar,SAR)是一种利用成像原理实现高分辨率雷达成像的技术。合成孔径雷达成像算法(Synthetic Aperture Radar Imaging Algorithm)是一种用于处理SAR数据并生成高质量雷达图像的方法。 合成孔径雷达成像算法的仿真实验主要包括以下步骤: 1. 数据采集:首先,需要采集合成孔径雷达系统所接收到的原始回波信号数据。这些数据通常采集自飞机、卫星等远距离平台,并且采集时保持平台与目标一定的相对运动。 2. 数据预处理:对采集到的原始数据进行预处理,主要包括去除杂散噪声、时域去斜校正和距离向压缩。这些预处理过程可以去除信号中的噪声和干扰,提高后续处理的效果。 3. 成像核心算法实现:实现合成孔径雷达成像算法的核心部分,包括距离像、方位向像和像平面聚焦。距离像通过补零来延长距离向,方位向像通过多普勒频率转换将接收到的信号转换为成像数据,最后在像平面上将方位向和距离向进行聚焦,得到高分辨率的雷达图像。 4. 图像后处理:对得到的雷达图像进行后处理,包括图像增强、去斑点和去噪等操作,以进一步提高图像的质量和清晰度。 5. 仿真实验结果评估:对实验得到的合成孔径雷达图像进行评估和分析,包括分辨率、噪声等指标的定量评估,以及目标检测和目标辨识等应用性能的分析合成孔径雷达成像算法的仿真实验是一种常用的手段,可以帮助研究人员验证算法的有效性和性能,优化算法参数和处理流程,为合成孔径雷达系统的实际应用提供可靠的基础。通过合成孔径雷达成像算法的仿真实验,可以更好地理解雷达成像原理,提高成像质量,并为SAR应用领域的研究和开发提供指导。 ### 回答2: 合成孔径雷达SAR)是一种利用雷达的合成孔径成像技术进行地物探测和成像的方法。SAR可以利用雷达系统在不同位置和时间采集的数据,通过合成处理得到高分辨率的图像。 合成孔径雷达成像RD算法是一种常用的SAR成像算法。该算法通过将接收到的回波信号进行一系列处理和合成,得到目标物体的图像。该算法的基本步骤如下: 1. 数据采集:通过雷达系统在不同位置和时间采集地物的回波信号。这些信号包含了目标物体的散射信息。 2. 预处理:对采集到的回波信号进行预处理,包括去除噪声、校正飞行轨迹等。 3. 脉冲压缩:利用脉冲压缩技术,将信号距离域中展宽,以提高分辨率。 4. 映射到二维空间:将经过脉冲压缩处理的信号映射到二维空间,按照雷达系统的位置和方向进行几何校正。 5. 成像合成:将映射到二维空间的信号进行合成,生成地物的图像。这一步骤是合成孔径雷达成像的核心处理过程。 通过进行合成孔径雷达成像RD算法仿真实验,可以评估算法的性能和效果。仿真实验可以通过模拟地物的散射特性和雷达系统的参数,生成回波信号,并根据算法的流程进行处理和合成,得到地物的仿真图像。 合成孔径雷达成像RD算法的仿真实验可以用于优化和改进算法的参数和流程,也可以用于验证和对比不同算法的性能。通过仿真实验,可以更好地理解和研究合成孔径雷达成像的原理和应用。
评论 19
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值