给定一个非负整数数组和一个整数 m,你需要将这个数组分成 m 个非空的连续子数组。设计一个算法使得这 m 个子数组各自和的最大值最小。
注意:
数组长度 n 满足以下条件:
- 1 ≤ n ≤ 1000
- 1 ≤ m ≤ min(50, n)
示例:
输入: nums = [7,2,5,10,8] m = 2 输出:18 解释: 一共有四种方法将nums分割为2个子数组。 其中最好的方式是将其分为[7,2,5] 和 [10,8], 因为此时这两个子数组各自的和的最大值为18,在所有情况中最小。
class Solution {
public:
int splitArray(vector<int>& nums, int m) {
int n = nums.size();
vector<int> sums(n + 1, 0);
vector<vector<int>> dp(m + 1, vector<int>(n + 1, INT_MAX));
dp[0][0] = 0;
for (int i = 1; i <= n; ++i) {
sums[i] = sums[i - 1] + nums[i - 1];
}
for (int i = 1; i <= m; ++i) {
for (int j = 1; j <= n; ++j) {
for (int k = i - 1; k < j; ++k) {
int val = max(dp[i - 1][k], sums[j] - sums[k]);
dp[i][j] = min(dp[i][j], val);
}
}
}
return dp[m][n];
}
};