文章标题

题意:将所有人的硬币进行一次平均分配,这里要注意的是,每个人只能和左右相邻的人交换硬币,而且这些人组成的是一个环

解法:

首先求出平均数为M

每个人初始的硬币为Ai

那么对于1,他能给予4号x1个硬币,并从2号出得到x2个硬币,那么对于1可得Ai-x1+x2 = M

同理可得An-xn+x1 = M

对上述的式子进行转化,可得

1:x2 =x1-C1 (C1 = A1 - M)

2:x3 = M-A2+x2 = 2M-A1-A2+x1 = x1-x2

最后所求为

|x1| + |x1-C1|+…+|x1-Cn-1|,要求这个最小,那么就是要x1为这些数的中位数
接下来问题就变成了x1道各个点的距离的问题,然后就让x1位中位数的时
候,就是答案了
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!高能预警,必须要用lld,不能用I64d,因为这个问题wrong了好多发。。。

#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;

long long a[1000010] , c[1000010];
int main()
{
    int n,flag;
    while(~scanf("%d",&n)){
        long long sum = 0 ; c[0] = 0;
        for(int i = 1 ; i <= n ; i++){
            scanf("%lld",&a[i]);
            sum += a[i];
        }
        sum /= n;
        for(int i = 1 ; i < n ; i++) c[i] = c[i - 1] + a[i] - sum;
        sort(c , c + n);
        long long x = c[n / 2] ,ans = 0;
        for(int i = 0 ; i < n ; i++){
            ans += abs(x - c[i]);
        }
        printf("%lld\n",ans);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值