题意:将所有人的硬币进行一次平均分配,这里要注意的是,每个人只能和左右相邻的人交换硬币,而且这些人组成的是一个环
解法:
首先求出平均数为M
每个人初始的硬币为Ai
那么对于1,他能给予4号x1个硬币,并从2号出得到x2个硬币,那么对于1可得Ai-x1+x2 = M
同理可得An-xn+x1 = M
对上述的式子进行转化,可得
1:x2 =x1-C1 (C1 = A1 - M)
2:x3 = M-A2+x2 = 2M-A1-A2+x1 = x1-x2
…
最后所求为
|x1| + |x1-C1|+…+|x1-Cn-1|,要求这个最小,那么就是要x1为这些数的中位数
接下来问题就变成了x1道各个点的距离的问题,然后就让x1位中位数的时
候,就是答案了
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!高能预警,必须要用lld,不能用I64d,因为这个问题wrong了好多发。。。
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
long long a[1000010] , c[1000010];
int main()
{
int n,flag;
while(~scanf("%d",&n)){
long long sum = 0 ; c[0] = 0;
for(int i = 1 ; i <= n ; i++){
scanf("%lld",&a[i]);
sum += a[i];
}
sum /= n;
for(int i = 1 ; i < n ; i++) c[i] = c[i - 1] + a[i] - sum;
sort(c , c + n);
long long x = c[n / 2] ,ans = 0;
for(int i = 0 ; i < n ; i++){
ans += abs(x - c[i]);
}
printf("%lld\n",ans);
}
return 0;
}