离散数学:n元素上的各种关系数目推导

写在开头

本着熟悉知识+经验分享的精神而作,如果有任何疑问可以联系博主,相互学习。
文章材料部分(图像)来自互联网,如有侵权请联系博主删除!

关系R的解释

假设有集合A,这里的关系R指的是从A到A上的二元关系,即R为A与自身的笛卡尔积:A×A的子集。

笛卡尔积

假如有集合: A = { 1 , 2 , 3 , 4 } A=\lbrace1,2,3,4\rbrace A={1,2,3,4}
则有 A × A = { ( 1 , 1 ) , ( 1 , 2 ) , ( 1 , 3 ) , ( 1 , 4 ) , ( 2 , 1 ) , ( 2 , 2 ) , ( 2 , 3 ) , ( 2 , 4 ) , ( 3 , 1 ) , ( 3 , 2 ) , ( 3 , 3 ) , ( 3 , 4 ) , ( 4 , 1 ) , ( 4 , 2 ) , ( 4 , 3 ) , ( 4 , 4 ) } A×A=\lbrace(1,1),(1,2),(1,3),(1,4),\\ \qquad \qquad \qquad(2,1),(2,2),(2,3),(2,4) ,\\ \qquad\qquad \qquad(3,1),(3,2),(3,3),(3,4),\\ \qquad \qquad \qquad(4,1),(4,2),(4,3),(4,4)\rbrace A×A={(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)}
表示为关系矩阵:
A × A = { 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 } A×A=\begin{Bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{Bmatrix} A×A=1111111111111111

n元素集合上有多少个子集?—— 2 n 2^n 2n

方法一(归纳推理):

假设集合: A n = { a 1 , a 2 , … … , a n } A_n = \lbrace a_1,a_2,……,a_n\rbrace An={a1,a2,,an}
n = 1; 子集个数为2,2^1, { ∅ , a 1 } \lbrace\varnothing ,a_1\rbrace {,a1}
n = 2; 子集个数为4,2^2, { ∅ , a 1 , a 2 , ( a 1 , a 2 ) } \lbrace\varnothing ,a_1,a_2,(a_1,a_2)\rbrace {,a1,a2,(a1,a2)}
n = 3; 子集个数为8,2^3, { ∅ , a 1 , a 2 , a 3 , ( a 1 , a 2 ) , ( a 1 , a 3 ) , ( a 2 , a 3 ) , ( a 1 , a 2 , a 3 ) } \lbrace\varnothing ,a_1,a_2,a_3,(a_1,a_2),(a_1,a_3),(a_2,a_3),(a_1,a_2,a_3)\rbrace {,a1,a2,a3,(a1,a2),(a1,a3),(a2,a3),(a1,a2,a3)}
n = ……
则,n元素集合的子集共有 2 n 2^n 2n

方法二(特征向量法):

建立n元素集合的特征向量,每个元素位置标0或者1,1代表原则此元素
特征向量的种类数即为n元素集合的子集个数
每个元素位置可填0或1,有n个元素,即n个2相乘,即 2 n 2^n 2n

n元素集合上有多少个不同的关系?—— 2 n 2 2^{n^2} 2n2

首先算一下n元素集合的二元关系的总数,每个元素都可以和所有元素(包括自己)组成二元关系,即:总的二元关系数: n 2 n^{2} n2
则关系R为总的二元关系的子集,根据上面的求解,即n元素集合上不同的关系数量为:
2 n 2 2^{n^2} 2n2

n元素集合上有多少个自反关系?—— 2 n 2 − n 2^{n^2-n} 2n2n

计算在恒等关系的基础上再添加二元关系构成的新的集合数目
即将下列矩阵上的某个或多个0,改为1后,得到的矩阵个数
恒 等 关 系 举 例 : I A = { 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 } 恒等关系举例:I_A=\begin{Bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{Bmatrix} IA=1000010000100001

我们可以看到有 n 2 − n n^2-n n2n个0
我们的问题转化为:求有 n 2 − n n^2-n n2n个元素集合的子集个数
利用上面得到的n元素集合上子集的个数为: 2 n 2^n 2n
则, n 2 − n n^2-n n2n个元素集合的子集个数为: 2 n 2 − n 2^{n^2-n} 2n2n

所以:n元素集合上自反关系数为: 2 n 2 − n 2^{n^2-n} 2n2n

n元素集合上有多少个反自反关系?—— 2 n 2 − n 2^{n^2-n} 2n2n

反自反关系就是特征矩阵主对角线全为0,所以问题转化后与上一个问题相同,
同样是求有 n 2 − n n^2-n n2n个元素集合的子集个数。

n元素集合上有多少个对称关系?—— 2 ( n 2 + n ) / 2 2^{(n^2+n)/2} 2(n2+n)/2

可以将 ( x , y ) 和 ( y , x ) , x ≠ y (x,y)和(y,x),x \ne y (x,y)(y,x),x=y看作一部分,也就是 ( n 2 − n ) 2 \tfrac{(n^2-n)}{2} 2(n2n)
再加上主对角线的部分 n n n个,那么一共是 ( n 2 − n ) 2 + n = ( n 2 + n ) 2 \tfrac{(n^2-n)}{2}+n=\tfrac{(n^2+n)}{2} 2(n2n)+n=2(n2+n)
问题转化为求有 ( n 2 − n ) 2 + n = ( n 2 + n ) 2 \tfrac{(n^2-n)}{2}+n=\tfrac{(n^2+n)}{2} 2(n2n)+n=2(n2+n)个元素集合的子集个数
那么一共是 2 ( n 2 + n ) / 2 2^{(n^2+n)/2} 2(n2+n)/2

n元素集合上有多少个反对称关系?—— 2 n ∗ 3 ( n 2 − n ) / 2 2^n*3^{(n^2-n)/2} 2n3(n2n)/2

可以将 ( x , y ) , x ≠ y (x,y),x \ne y (x,y),x=y看作特征部分,也就是 ( n 2 − n ) 2 \tfrac{(n^2-n)}{2} 2(n2n)
那么这部分中每个有序对 ( x , y ) (x,y) (x,y),对应三种状态 ( y , x ) , ( x , y ) (y,x),(x,y) (y,x),(x,y) ∅ \varnothing
我们只取其中一种状态,即: 3 ( n 2 − n ) / 2 3^{(n^2-n)/2} 3(n2n)/2
主对角线部分不受限制:共有 2 n 2^n 2n
组合数为: 2 n ∗ 3 ( n 2 − n ) / 2 2^n*3^{(n^2-n)/2} 2n3(n2n)/2

n元素集合上有多少个自反又对称关系?—— 2 ( n 2 − n ) / 2 2^{(n^2-n)/2} 2(n2n)/2

上面已经推过对称关系,不过此时的主对角线元需要全部选中
依旧将 ( x , y ) 和 ( y , x ) , x ≠ y (x,y)和(y,x),x \ne y (x,y)(y,x),x=y看作一部分,也就是 ( n 2 − n ) 2 \tfrac{(n^2-n)}{2} 2(n2n)
主对角线此时只有一种状态,1
问题转化为1×有 ( n 2 − n ) 2 \tfrac{(n^2-n)}{2} 2(n2n)个元素集合的子集个数
即: 1 × 2 ( n 2 − n ) / 2 = 2 ( n 2 − n ) / 2 1×2^{(n^2-n)/2}=2^{(n^2-n)/2} 1×2(n2n)/2=2(n2n)/2

n元素集合上有多少个反自反又对称关系?—— 2 ( n 2 − n ) / 2 2^{(n^2-n)/2} 2(n2n)/2

与上述推导同理,主对角线部分此时只有一种状态,1
问题转化为1×有 ( n 2 − n ) 2 \tfrac{(n^2-n)}{2} 2(n2n)个元素集合的子集个数
即: 1 × 2 ( n 2 − n ) / 2 = 2 ( n 2 − n ) / 2 1×2^{(n^2-n)/2}=2^{(n^2-n)/2} 1×2(n2n)/2=2(n2n)/2

n元素集合上有多少个既不自反又不反自反但对称关系?—— ( 2 n − 2 ) ∗ 2 ( n 2 − n ) / 2 (2^n-2)*2^{(n^2-n)/2} (2n2)2(n2n)/2

主对角线部分此时的状态数为 2 n − 2 2^n-2 2n2
问题转化为 ( 2 n − 2 ) (2^n-2) (2n2)×有 ( n 2 − n ) 2 \tfrac{(n^2-n)}{2} 2(n2n)个元素集合的子集个数
或者说用对称关系的总个数 - (自反对称总数 + 反自反对称总数)

即: ( 2 n − 2 ) ∗ 2 ( n 2 − n ) / 2 = 2 ( n 2 + n ) / 2 − 2 ∗ 2 ( n 2 − n ) / 2 (2^n-2)*2^{(n^2-n)/2}=2^{(n^2+n)/2}-2*2^{(n^2-n)/2} (2n2)2(n2n)/2=2(n2+n)/222(n2n)/2

n元素集合上有多少个既不自反又不反自反关系?—— 2 n 2 − 2 ∗ 2 n 2 − n 2^{n^2}-2*2^{n^2-n} 2n222n2n

由于自反关系和反自反关系是互斥的
我们只要用n元素集合上总的关系数-(自反关系数+反自反关系数)即可
总数为 2 n 2 − 2 ∗ 2 n 2 − n 2^{n^2}-2*2^{n^2-n} 2n222n2n

写在结尾

感谢阅读,如有问题可以联系博主,一起交流成长。
如有侵权请联系博主删除!

  • 230
    点赞
  • 730
    收藏
    觉得还不错? 一键收藏
  • 14
    评论
评论 14
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值