关系及其性质
关系定义
设A,B为集合,AXB的任何子集叫做从A到B的二元关系,当A=B时,叫做A上的二元关系,简称为关系,记作R.
关系的本质:
- 是一个集合
- 是一个笛卡尔乘积的子集
若<x,y> ∈ \in ∈R,记作xRy;若<x,y> ∉ \notin ∈/R,记作xR(斜杠)y
若A有m个元素,B有n个元素,则集合A到B有多少个不同的二元关系?
A到B有mn个元素
关系是集合的子集,就是幂集的概念,所以变相的求P(AXB)=2(AXB)=2mn
空关系
∅ \emptyset ∅是A上的关系,就称为空关系
全域关系
EA={<x,y>|x ∈ \in ∈A,y ∈ \in ∈A}=AXA
恒等关系
IA={<x,x>|x ∈ \in ∈A}
其他关系
整除关系D,小于等于关系L,包含R,与数学上的概念相同。
定义域
记作domR,关系上有序对第一个元素的集合
值域
记作ranR,关系上有序对第二个元素的集合
域
定义域与值域合起来,就是域
关系的3种表示方法
集合方式 序偶的集合
枚举有序对
代数方式 关系矩阵 适合计算
用1和0,表示A中元素与B中集合是否有关系。只写出1来,剩下的补0就可以了。
几何方式 关系图 直观
若x中结点和y中的结点有关系,那么以x结点为起点,到y中结点画一条有向边。
关系5个常见性质
自反 反自反
∀
\forall
∀x
∈
\in
∈A,有XRX,称为自反关系
∀
\forall
∀x
∈
\in
∈A,有XR(斜杠)X,称为反自反关系,如全域关系,恒等关系,小于等于关系,整除关系
如果一个关系R是自反的,那么它一定不是反自反的。如实数集上的小于关系,幂集上的真包含关系。
对称 反对称
对于任意的
∀
\forall
∀XRY,有YRX就是对称关系。如A上的全域关系,恒等有关系,空关系。
对于任意的
∀
\forall
∀XRY,同时YRX,有X=Y,就称为反对称关系。如:恒等关系,空关系
传递性
(
∀
\forall
∀<x,y>)(
∀
\forall
∀<y,z>)(<x,y>
∈
\in
∈R
⋀
\bigwedge
⋀<y,z>
∈
\in
∈R
→
\rightarrow
→<x,z>
∈
\in
∈R),称R是A上的传递关系。
若xRy,yRz
→
\rightarrow
→xRz,如A上的全域关系,恒等关系和空关系
小于等于关系,小于关系,整除关系,包含关系,真包含关系。
总结
关系的运算
关系是一个集合(笛卡尔乘积的子集),因此集合的运算及规律均适用于关系。
关系矩阵的布尔运算
每个元素要么是1要么是0.那么就叫布尔矩阵
两个布尔矩阵的,可以定义并,交,乘
逆运算
由A到B,得到B到A上的关系,通过颠倒两个元素的位置。
复合运算 (重点)右复合
A中的某个元素,能否在中间集合中,找到一个中间元素,指向集合C中一个元素。那么A到C可定义一个关系,这个关系就是复合关系。记为:ROS,R为A到B的关系 ,S为B到C关系
复合定理
关系矩阵求复合(矩阵布尔积)
MRXS=MR ⨀ \bigodot ⨀ MS//顺序不能颠倒
对于一个关系,可以连续做复合,即R的n次幂
R是A上的一个关系。R和R可做复合。
R^0={<x,x>|x
∈
\in
∈A}=I A ,即对角线的元素全为1,非对角线元素全为0.
R(n+1)=Rn
∘
\circ
∘R,n可以从1开始。
n次幂的几何意义,是描述关系中长度为n的关系。(长度:指由几个关系构成的复合关系)
闭包运算(重点)
闭包的定义
自反闭包
比R大,包含R,添加的元素最少
包含R的最小的自反关系。记为r®
对称闭包
同上,换成对称,记为s®
传递闭包
同上,换成传递,记为t®
定理
要会证明。
关系性质与运算总结
判断关系性质的充要条件
关系保持
施加关系后,所得关系仍具有相同的性质
闭包运算
等价关系与序关系
几种特殊的二元关系
等价关系及划分
划分
两两不相交,全覆盖集合
等价关系
满足自反,对称的和传递的关系,记为x ~ y
等价类
等价关系的子集。
定理
商集相关定理
证明和判断一个关系是否是等价关系
已知等价关系,写出其对应的划分/ 给定一个划分,写出其等价的等价关系
集合A上给出一个划分和给出一个等价关系是一一对应的 商集A/R就是这个划分
偏序关系
A上的恒等关系
小于等于关系,大于等于关系
整除关系
包含关系
哈斯图
8个特定元素
函数
函数的复合
总结
与英语二一样,少做笔记,关键是理解。