离散数学复习集合之关系

关系及其性质

关系定义

设A,B为集合,AXB的任何子集叫做从A到B的二元关系,当A=B时,叫做A上的二元关系,简称为关系,记作R.
关系的本质:

  1. 是一个集合
  2. 是一个笛卡尔乘积的子集

若<x,y> ∈ \in R,记作xRy;若<x,y> ∉ \notin /R,记作xR(斜杠)y

若A有m个元素,B有n个元素,则集合A到B有多少个不同的二元关系?

A到B有mn个元素
关系是集合的子集,就是幂集的概念,所以变相的求P(AXB)=2(AXB)=2mn

空关系

∅ \emptyset 是A上的关系,就称为空关系

全域关系

EA={<x,y>|x ∈ \in A,y ∈ \in A}=AXA

恒等关系

IA={<x,x>|x ∈ \in A}

其他关系

整除关系D,小于等于关系L,包含R,与数学上的概念相同。

定义域

记作domR,关系上有序对第一个元素的集合

值域

记作ranR,关系上有序对第二个元素的集合

定义域与值域合起来,就是域

关系的3种表示方法

集合方式 序偶的集合

枚举有序对

代数方式 关系矩阵 适合计算

用1和0,表示A中元素与B中集合是否有关系。只写出1来,剩下的补0就可以了。

几何方式 关系图 直观

若x中结点和y中的结点有关系,那么以x结点为起点,到y中结点画一条有向边。

关系5个常见性质

自反 反自反

∀ \forall x ∈ \in A,有XRX,称为自反关系
∀ \forall x ∈ \in A,有XR(斜杠)X,称为反自反关系,如全域关系,恒等关系,小于等于关系,整除关系
如果一个关系R是自反的,那么它一定不是反自反的。如实数集上的小于关系,幂集上的真包含关系。

对称 反对称

对于任意的 ∀ \forall XRY,有YRX就是对称关系。如A上的全域关系,恒等有关系,空关系。
对于任意的 ∀ \forall XRY,同时YRX,有X=Y,就称为反对称关系。如:恒等关系,空关系

传递性

( ∀ \forall <x,y>)( ∀ \forall <y,z>)(<x,y> ∈ \in R ⋀ \bigwedge <y,z> ∈ \in R → \rightarrow <x,z> ∈ \in R),称R是A上的传递关系。
若xRy,yRz → \rightarrow xRz,如A上的全域关系,恒等关系和空关系
小于等于关系,小于关系,整除关系,包含关系,真包含关系。

总结

关系的运算

关系是一个集合(笛卡尔乘积的子集),因此集合的运算及规律均适用于关系。

关系矩阵的布尔运算

每个元素要么是1要么是0.那么就叫布尔矩阵
两个布尔矩阵的,可以定义并,交,乘

逆运算

由A到B,得到B到A上的关系,通过颠倒两个元素的位置。

复合运算 (重点)右复合

A中的某个元素,能否在中间集合中,找到一个中间元素,指向集合C中一个元素。那么A到C可定义一个关系,这个关系就是复合关系。记为:ROS,R为A到B的关系 ,S为B到C关系

复合定理

关系矩阵求复合(矩阵布尔积)

MRXS=MR ⨀ \bigodot MS//顺序不能颠倒

对于一个关系,可以连续做复合,即R的n次幂

R是A上的一个关系。R和R可做复合。
R^0={<x,x>|x ∈ \in A}=I A ,即对角线的元素全为1,非对角线元素全为0.
R(n+1)=Rn ∘ \circ R,n可以从1开始。
n次幂的几何意义,是描述关系中长度为n的关系。(长度:指由几个关系构成的复合关系)

闭包运算(重点)

闭包的定义

自反闭包

比R大,包含R,添加的元素最少
包含R的最小的自反关系。记为r®

对称闭包

同上,换成对称,记为s®

传递闭包

同上,换成传递,记为t®

定理

要会证明。

关系性质与运算总结

判断关系性质的充要条件

关系保持

施加关系后,所得关系仍具有相同的性质

闭包运算

等价关系与序关系

几种特殊的二元关系

等价关系及划分

划分

两两不相交,全覆盖集合

等价关系

满足自反,对称的和传递的关系,记为x ~ y

等价类

等价关系的子集。

定理

商集相关定理

证明和判断一个关系是否是等价关系

已知等价关系,写出其对应的划分/ 给定一个划分,写出其等价的等价关系

集合A上给出一个划分和给出一个等价关系是一一对应的 商集A/R就是这个划分

偏序关系

A上的恒等关系
小于等于关系,大于等于关系
整除关系
包含关系

哈斯图

8个特定元素

函数

函数的复合

总结

与英语二一样,少做笔记,关键是理解。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

guangod

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值