1.DenseNet模型
import torch
from torch import nn
from d2l import torch as d2l
#################1.稠密块体
#DenseNet使用了ResNet改良版的“批量规范化、激活和卷积”架构.首先实现一下这个架构。
def conv_block(input_channels,num_channels):
return nn.Sequential(
nn.BatchNorm2d(input_channels),nn.ReLU(),
nn.Conv2d(input_channels,num_channels,kernel_size=3,padding=1))
#一个稠密块由多个卷积块组成,每个卷积块使用相同数量的输出通道。
#然而,在前向传播中,将每个卷积块的输入和输出在通道维上连结。
class DenseBlock(nn.Module):
def __init__(self,num_convs,input_channels,num_channels):
super(DenseBlock,self).__init__()
layer = []
for i in range(num_convs):
layer.append(conv_block(
num_channels * i +input_channels,num_channels))
self.net = nn.Sequential(*layer)
def forward(self,X):
for blk in self.net:
Y = blk(X)
#连接通道维度上每个块的输入和输出
X = torch.cat((X,Y),dim=1)
return X
#定义一个有2个输出通道数为10的DenseBlock。使用通道数为3的输入时,我们会得到通道数为3+2*10=23的输出.
#卷积块的通道数控制了输出通道数相对于输入通道数的增长,因此也被称为增长率(growth rate)
blk = DenseBlock(2,3,10)
X = torch.randn(4,3,8,8)
Y = blk(X)
print(Y.shape)
################2.过渡层
#由于每个稠密块都会带来通道数的增加,使用过多则会过于复杂化模型。过渡层可以用来控制模型复杂度。
#通过1*1卷积层来减小通道数,并使用步幅为2的平均汇聚层减半高和宽,从而进一步降低模型复杂度。
def transition_block(input_channels,num_channels):
return nn.Sequential(
nn.BatchNorm2d(input_channels),nn.ReLU(),
nn.Conv2d(input_channels,num_channels,kernel_size=1),
nn.AvgPool2d(kernel_size=2,stride=2))
#对上一个例子中稠密块的输出使用通道数为10的过渡层。此时输出的通道数减为10,高和宽均减半。
b1k = transition_block(23,10)
print(b1k(Y).shape)
2.模型训练
import torch
from torch import nn
from d2l import torch as d2l
#################1.稠密块体
#DenseNet使用了ResNet改良版的“批量规范化、激活和卷积”架构.首先实现一下这个架构。
def conv_block(input_channels,num_channels):
return nn.Sequential(
nn.BatchNorm2d(input_channels),nn.ReLU(),
nn.Conv2d(input_channels,num_channels,kernel_size=3,padding=1))
#一个稠密块由多个卷积块组成,每个卷积块使用相同数量的输出通道。
#然而,在前向传播中,将每个卷积块的输入和输出在通道维上连结。
class DenseBlock(nn.Module):
def __init__(self,num_convs,input_channels,num_channels):
super(DenseBlock,self).__init__()
layer = []
for i in range(num_convs):
layer.append(conv_block(
num_channels * i +input_channels,num_channels))
self.net = nn.Sequential(*layer)
def forward(self,X):
for blk in self.net:
Y = blk(X)
#连接通道维度上每个块的输入和输出
X = torch.cat((X,Y),dim=1)
return X
'''
#定义一个有2个输出通道数为10的DenseBlock。使用通道数为3的输入时,我们会得到通道数为3+2*10=23的输出.
#卷积块的通道数控制了输出通道数相对于输入通道数的增长,因此也被称为增长率(growth rate)
blk = DenseBlock(2,3,10)
X = torch.randn(4,3,8,8)
Y = blk(X)
print(Y.shape)
'''
################2.过渡层
#由于每个稠密块都会带来通道数的增加,使用过多则会过于复杂化模型。过渡层可以用来控制模型复杂度。
#通过1*1卷积层来减小通道数,并使用步幅为2的平均汇聚层减半高和宽,从而进一步降低模型复杂度。
def transition_block(input_channels,num_channels):
return nn.Sequential(
nn.BatchNorm2d(input_channels),nn.ReLU(),
nn.Conv2d(input_channels,num_channels,kernel_size=1),
nn.AvgPool2d(kernel_size=2,stride=2))
#对上一个例子中稠密块的输出使用通道数为10的过渡层。此时输出的通道数减为10,高和宽均减半。
b1k = transition_block(23,10)
#print(b1k(Y).shape)
###############3.DenseNet模型
#来构造DenseNet模型。DenseNet首先使用同ResNet一样的单卷积层和最大汇聚层
b1 = nn.Sequential(
nn.Conv2d(1,64,kernel_size=7,stride=2,padding=3),
nn.BatchNorm2d(64),nn.ReLU(),
nn.MaxPool2d(kernel_size=3,stride=2,padding=1))
#接下来,类似于ResNet使用的4个残差块,DenseNet使用的是4个稠密块。与ResNet类似,可设置每个稠密块使用多少个卷积层
#这里设成4,从而与ResNet-18保持一致。稠密块里的卷积层通道数(即增长率)设为32,所以每个稠密块将增加128个通道。
#每个模块之间,ResNet通过步幅为2的残差块减小高和宽,DenseNet则使用过渡层来减半高和宽,并减半通道数。
#num_channels为当前的通道数
num_channels,growth_rate = 64,32
num_convs_in_dense_blocks = [4,4,4,4]
blks = []
for i,num_convs in enumerate(num_convs_in_dense_blocks):
blks.append(DenseBlock(num_convs,num_channels,growth_rate))
#上一个稠密块的输出通道数
num_channels += num_convs * growth_rate
#在稠密块之间添加一个转换层,使通道数减半
if i != len(num_convs_in_dense_blocks) - 1:
blks.append(transition_block(num_channels,num_channels // 2))
num_channels = num_channels // 2
#与ResNet类似,最后接上全局汇聚层和全连接层来输出结果。
net = nn.Sequential(
b1, *blks,
nn.BatchNorm2d(num_channels),nn.ReLU(),
nn.AdaptiveAvgPool2d((1,1)),
nn.Flatten(),
nn.Linear(num_channels,10))
#############4.训练模型
#由于这里使用了比较深的网络,本节里将输入高和宽从224降到96来简化计算。
lr,num_epochs,batch_size = 0.1,10,256
train_iter,test_iter = d2l.load_data_fashion_mnist(batch_size,resize=96)
d2l.train_ch6(net,train_iter,test_iter,num_epochs,lr,d2l.try_gpu())
d2l.plt.show()