从零开始开发自己的类keras深度学习框架4:实现sequential

认真学习,佛系更博。

本章将介绍sequential的实现,并在结尾尝试搭建一个小型的深度学习模型;

前面已经介绍了数据的载入、全连接层的实现、优化器和激活函数的实现,基本内容已经铺垫好,我们希望实现的sequential如下:


    # 两种搭建模型方法
    # 1. 列表形式
    model1 = Sequential([
        Dense(kernel_size=64, activation="sigmoid", input_shape=(784, )),
        Dense(kernel_size=10, activation="sigmoid")
    ])
    
    # 2. add添加网络层
    model2 = Sequential()
    model2.add(Dense(kernel_size=64, activation="sigmoid", input_shape=(784, )))
    model2.add(Dense(kernel_size=10, activation="sigmoid"))

类似于keras,实现方法是在初始化函数中控制一个layer_list变量,并添加一个成员函数add,并且add也可以添加网络到layer_list:

    def __init__(self, layer_list=None, name=None):
        """
        初始化网络模型
        :param layer_list: 网络层列表
        :param name: 模型名称
        """
        self.layer_list = layer_list if layer_list else []

        self.name = name if name else "sequential"

        self.loss = None
        self.optimizer = None

        self.lr = None

    def add(self, layer):
        """
        添加网络层
        :param layer: 神经网络层
        :return: 无返回
        """
        self.layer_list.append(layer)

下面将实现compile函数,该函数稍微复杂,其中,每层网络的权重shape确定需要前一层模型的单元个数,另外,我们建立了一个新的列表new_layer_list,用于保存更新后的网络层列表,因为我们实现dense时,把激活函数的功能实现交给激活层,因此,检测到activation不为空的情况下,需要额外添加一个新的激活函数层。详细代码如下:

    def compile(self, loss="mse", lr=0.01, **k_args):
        """
        编译模型
        :param loss: 损失函数
        :param lr: 学习率
        :param k_args: 其他参数, 比如momentum
        :return:
        """

        # 这里只实现两种损失函数
        assert loss in {"mse", "cross_entropy"}

        # self.loss赋值为Mse()或CrossEntropy()
        # self.optimizer赋值为SGD、Momentum...
        self.loss = loss_dict[loss]()

        self.lr = lr

        input_shape = None
        # 开始编译模型
        # 建立新的列表,准备插入激活层等;
        new_layer_list = []
        layer_index = 1
        layer_name_set = set()
        for index, layer in enumerate(self.layer_list):
            if index == 0:
                input_shape = layer.get_input_shape()

            layer.build(input_shape)
            layer.set_name("layer_{}".format(layer_index))
            layer_index += 1

            if layer.get_name() in layer_name_set:
                raise NameError("网络名重复")
            layer_name_set.add(layer.get_name())

            new_layer_list.append(layer)

            # 下一层输入神经但愿个数等于该层个数
            input_shape = layer.get_output_shape()

            if layer.get_activation_layer():
                new_layer = activation_dict[layer.get_activation_layer()]()
                new_layer.build(input_shape)
                new_layer.set_name("layer_{}".format(layer_index))
                layer_index += 1

                new_layer_list.append(new_layer)

        self.layer_list = new_layer_list

        return self

损失函数的实现较简单,直接见代码实现,这里不再赘述;网络模型的前向和反向传播代码:

    def forward(self, input_data=None, train=True):
        """
        前向运算
        :param train: 是否为训练模式
        :param input_data: 输入数据
        :return: 返回输出
        """
        output_signal = input_data

        for index, layer in enumerate(self.layer_list):
            output_signal = layer.forward(output_signal, train=train)

        return output_signal

    def backward(self, delta, lr):
        """
        反向传播
        :param lr: 学习率
        :param delta: 梯度
        :return:
        """
        current_delta = delta
        for layer in self.layer_list[::-1]:
            current_delta = layer.backward(current_delta)
            layer.update(lr)

最后是训练模型代码:

    def fit(self, train_data=None, train_label=None, val_ratio=0.2, epoch=10, batch=32, acc=True):
        """
        训练模型
        :param acc: 是否输出准确率
        :param train_data: 训练数据
        :param train_label: 训练标签
        :param val_ratio: 验证集比例
        :param epoch: 迭代代数
        :param batch: 批处理大小
        :return:
        """
        # 划分训练集和验证集
        train_data, train_label, val_data, val_label = train_test_split(train_data, train_label, val_ratio)

        for i in range(epoch):

            # 作梯度更新之前先打乱训练数据的顺序
            train_data, train_label = shuffle_data_label(train_data, train_label)

            for index in range(0, len(train_data), batch):
                batch_data, batch_label = train_data[index: index + batch], train_label[index: index + batch]

                y_predict = self.forward(batch_data, train=True)

                # 计算当前损失
                loss = self.loss.calculate_loss(y_predict, batch_label)

                delta = self.loss.derivative()
                self.backward(delta, self.lr)

                process_percent = index / len(train_data)

                if acc:
                    y_predict_class = np.argmax(y_predict, axis=-1)
                    y_label_class = np.argmax(batch_label, axis=-1)
                    accuracy = np.sum(y_predict_class == y_label_class) / batch

                    print("\repoch_{} {} loss:{}\tacc:{}".format(i + 1,
                                                                 ("-" * int(100 * process_percent)).ljust(100, " "),
                                                                 loss,
                                                                 accuracy), end="", flush=True)
                else:
                    print("\repoch_{} {} loss:{}".format(i + 1,
                                                         ("-" * int(100 * process_percent)).ljust(100, " "),
                                                         loss), end="", flush=True)

            # 输出换行符
            print()

            val_loss, val_acc = self.evaluate(val_data, val_label)
            if acc:
                print(
                    "validation data size: {}, loss: {}, accuracy: {}".format(len(val_data),
                                                                              val_loss,
                                                                              val_acc))
            else:
                print("validation data size: {}, loss: {}".format(len(val_data), val_loss))

在每一个epoch内,我们使用shuffle打乱训练数据的顺序,其代码详情见github:https://github.com/darkwhale/neural_network ;

至此,我们已经实现了简单的神经网络模型所需要的功能,搭建一个模型尝试一下吧:

from enet.model import Sequential
from enet.data import ImageHandler
from enet.layers import Dense, Sigmoid, Dropout, Softmax, Relu, BatchNormalization, Conv2D, Flatten, MaxPool2D


if __name__ == '__main__':

    data_handler = ImageHandler("dataset", gray=True, flatten=True, use_scale=True)
    train_data, train_label, test_data, test_label = data_handler.get_data(ratio=0.2, read_cache=False)

    model = Sequential()
    model.add(Dense(kernel_size=64, activation="sigmoid", input_shape=(784, ), optimizer="adam"))
    model.add(Dense(kernel_size=32, optimizer="momentum"))
    model.add(Sigmoid())
    model.add(Dense(kernel_size=10, activation="sigmoid"))

    model.compile(loss="mse", lr=0.01)
    model.summary()
    model.fit(train_data, train_label, epoch=10)

第一次运行可能需要等待一会,解析图片比较耗时,以后再运行就可以直接从缓存中读取数据;

为了便于显示,我这里只训练了5个epoch,其准确率已经达到了0.82,可见我们实现的模型的准确性。

当然,模型的准确率还可进一步提升,下一章将实现大名鼎鼎的卷积神经网络。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Keras深度学习实战(15)——从零开始实现YOLO目标检测是一篇非常实用的教程。YOLO(You Only Look Once)是一种流行的实时目标检测算法,其核心思想是将目标检测任务视为回归问题,并通过卷积神经网络实现端到端的检测。这篇教程提供了一步一步的实现代码,让读者能够快速了解并实践YOLO目标检测的方法。 首先,教程介绍了YOLO的工作原理和网络结构。YOLO将输入图像划分为多个网格,每个网格负责预测包含在该网格中的目标。每个网格预测包含目标的方框的位置和别,以及目标的置信度。 接下来,教程详细介绍了如何实现YOLO的网络结构。使用Keras库,创建了一个具有卷积和池化层的卷积神经网络。还使用了Anchor Boxes,用来预测不同比例和宽高比的目标。 教程还介绍了如何预处理输入图像,包括将图像调整为适当的大小,并将目标边界框转换为YOLO需要的格式。然后,选择了合适的损失函数,训练了模型,以及进行了模型评估和预测。 最后,教程提供了一些改进和扩展的思路,包括使用更大的数据集进行训练、调整网络结构和超参数等等。 通过这篇教程,读者可以了解到YOLO目标检测的基本原理和实现步骤。并且,使用Keras库可以很方便地实现和训练自己的YOLO模型。无论是对于已经有一定深度学习基础的读者,还是对于刚刚开始学习的读者,这篇教程都是非常有价值的参考资料。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值