luogu P4726 【模板】多项式指数函数(多项式 exp)

18 篇文章 0 订阅

背景:

多项式全家桶 eating... \text{eating...} eating...

题目传送门:

https://www.luogu.org/problemnew/show/P4726

题意:

求一个多项式 G ( x ) G(x) G(x),使得 G ( x ) ≡ e F ( x ) ( m o d    x n ) G(x)≡e^{F(x)} (\mod x^n) G(x)eF(x)(modxn)

思路:

大力推式子。
G ( x ) ≡ e F ( x ) ( m o d    x n ) G(x)≡e^{F(x)}(\mod x^n) G(x)eF(x)(modxn)

两边同时取对数,得:
lg ⁡ G ( x ) ≡ F ( x ) ( m o d    x n ) lg ⁡ G ( x ) − F ( x ) ≡ 0 ( m o d    x n ) \begin{aligned}\lg G(x)&≡F(x)(\mod x^n)\\ \lg G(x)-F(x)&≡0(\mod x^n)\end{aligned} lgG(x)lgG(x)F(x)F(x)(modxn)0(modxn)

考虑牛顿迭代解决问题,假设做完前 n n n项的结果为 H ( x ) H(x) H(x),即:
G ( x ) ≡ H ( x ) ( m o d    x n ) G(x)≡H(x)(\mod x^n) G(x)H(x)(modxn)

f ( G ( x ) ) = lg ⁡ G ( x ) − F ( x ) f\big(G(x)\big)=\lg G(x)-F(x) f(G(x))=lgG(x)F(x),则有:
f ( G ( x ) ) ≡ 0 ( m o d    x n ) f\big(G(x)\big)≡0(\mod x^n) f(G(x))0(modxn)

做泰勒展开,有:
f ( H ( x ) ) + f ′ ( H ( x ) ) ( G ( x ) − H ( x ) ) + f ′ ′ ( H ( x ) ) ( G ( x ) − H ( x ) ) 2 2 + . . . ≡ 0 ( m o d    x n ) f ( H ( x ) ) + f ′ ( H ( x ) ) ( G ( x ) − H ( x ) ) ≡ 0 ( m o d    x 2 n ) \begin{aligned}f\big(H(x)\big)+f'\big(H(x)\big)\big(G(x)-H(x)\big)+\frac{f''\big(H(x)\big)\big(G(x)-H(x)\big)^2}{2}+...&≡0(\mod x^n)\\ f\big(H(x)\big)+f'\big(H(x)\big)\big(G(x)-H(x)\big)&≡0(\mod x^{2n})\end{aligned} f(H(x))+f(H(x))(G(x)H(x))+2f(H(x))(G(x)H(x))2+...f(H(x))+f(H(x))(G(x)H(x))0(modxn)0(modx2n)

移项得:
G ( x ) ≡ H ( x ) − f ( H ( x ) ) f ′ ( H ( x ) ) ( m o d    x 2 n ) G(x)≡H(x)-\frac{f\big(H(x)\big)}{f'\big(H(x)\big)}(\mod x^{2n}) G(x)H(x)f(H(x))f(H(x))(modx2n)

带入 f ( G ( x ) ) = lg ⁡ G ( x ) − F ( x ) f\big(G(x)\big)=\lg G(x)-F(x) f(G(x))=lgG(x)F(x),有:
G ( x ) ≡ H ( x ) − ln ⁡ H ( x ) − F ( x ) 1 H ( x ) ( m o d    x 2 n ) G ( x ) ≡ H ( x ) ( 1 − ln ⁡ H ( x ) + F ( x ) ) ( m o d    x 2 n ) \begin{aligned}G(x)&≡H(x)-\frac{\ln H(x)-F(x)}{\frac{1}{H(x)}}(\mod x^{2n})\\ G(x)&≡H(x)\big(1-\ln H(x)+F(x)\big)(\mod x^{2n})\end{aligned} G(x)G(x)H(x)H(x)1lnH(x)F(x)(modx2n)H(x)(1lnH(x)+F(x))(modx2n)

递归倍增解决即可。
注意上面的 1 1 1是点乘的 1 1 1,要在常数项赋值为 1 1 1
多项式求 ln ⁡ \ln ln之后的结果 g 2 g2 g2要在每一次 exp \text{exp} exp时清空。

代码:

#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long
const LL mod=998244353,G=3,inv_G=332748118;
using namespace std;
	LL a[1000010],b[1000010],f[1000010],g[1000010],g1[1000010],g2[1000010];
	int limit,n,l,r[1000010];
LL dg(LL x,LL k)
{
	if(!k) return 1;
	LL op=dg(x,k>>1);
	if(k&1) return op*op%mod*x%mod; else return op*op%mod;
}
LL inv(LL x)
{
	return dg(x,mod-2);
}
void dao(LL *f,LL *g,int n)
{
	for(int i=1;i<n;i++)
		g[i-1]=i*f[i]%mod;
	g[n-1]=0;
}
void jifen(LL *f,LL *g,int n)
{
	for(int i=1;i<n;i++)
		g[i]=f[i-1]*inv(i)%mod;
	g[0]=0;
}
void init(int n)
{
	limit=1,l=0;
	while(limit<(n<<1))
		limit<<=1,l++;
	for(int i=1;i<limit;i++)
	r[i]=((r[i>>1]>>1)|((i&1)<<(l-1)));
}
void NTT(LL *now,int limit,int op)
{
	for(int i=0;i<limit;i++)
		if(i<r[i]) swap(now[i],now[r[i]]);
	for(int mid=1;mid<limit;mid<<=1)
	{
		LL wn=dg(op==1?G:inv_G,(mod-1)/(mid<<1));
		for(int j=0;j<limit;j+=(mid<<1))
		{
			LL w=1;
			for(int k=0;k<mid;k++,w=(w*wn)%mod)
			{
				LL x=now[j+k],y=w*now[j+k+mid]%mod;
				now[j+k]=(x+y)%mod;
				now[j+k+mid]=(x-y+mod)%mod;
			}
		}
	}
}
void dft(LL *f,int n,int limit)
{
	NTT(f,limit,-1);
	LL INV=inv(limit);
	for(int i=0;i<n;i++)
		f[i]=f[i]*INV%mod;
}
void poly_inv(LL *f,LL *g,int n)
{
	if(n==1)
	{
		g[0]=inv(f[0]);
		return;
	}
	poly_inv(f,g,(n+1)>>1);
	init(n);
	memset(a,0,sizeof(a));
	memset(b,0,sizeof(b));
	for(int i=0;i<n;i++)
		a[i]=f[i],b[i]=g[i];
	NTT(a,limit,1),NTT(b,limit,1);
	for(int i=0;i<limit;i++)
		b[i]=b[i]*((2ll-a[i]*b[i]%mod+mod)%mod)%mod;
	dft(b,n,limit);
	for(int i=0;i<n;i++)
		g[i]=b[i];
}
void poly_ln(LL *f,int n)
{
	dao(f,g1,n);
	poly_inv(f,g2,n);
	init(n);
	NTT(g1,limit,1),NTT(g2,limit,1);
	for(int i=0;i<limit;i++)
		g1[i]=g1[i]*g2[i]%mod;
	dft(g1,n,limit);
	jifen(g1,g2,n);
}
void poly_exp(LL *f,LL *g,int n)
{
	if(n==1)
	{
		g[0]=1;
		return;
	}
	poly_exp(f,g,(n+1)>>1);
	memset(g1,0,sizeof(g1));
	memset(g2,0,sizeof(g2));
	poly_ln(g,n);
	init(n);
	memset(a,0,sizeof(a));
	memset(b,0,sizeof(b));
	for(int i=0;i<n;i++)
		a[i]=g[i],b[i]=((LL)(!i)-g2[i]+f[i]+mod)%mod;
	NTT(a,limit,1),NTT(b,limit,1);
	for(int i=0;i<limit;i++)
		a[i]=a[i]*b[i]%mod;
	dft(a,n,limit);
	for(int i=0;i<n;i++)
		g[i]=a[i];
}
int main()
{
	scanf("%d",&n);
	for(int i=0;i<n;i++)
		scanf("%lld",&f[i]);
	poly_exp(f,g,n);
	for(int i=0;i<n;i++)
		printf("%lld ",g[i]);
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值