bzoj P5093 [Lydsy1711月赛]图的价值

背景:

貌似 luogu \text{luogu} luogu没有这道题,于是来巨慢的 bzoj \text{bzoj} bzoj交了。

题目传送门:

https://www.lydsy.com/JudgeOnline/problem.php?id=5093

题意:

“简单无向图”是指无重边、无自环的无向图(不一定连通)。
一个带标号的图的价值定义为每个点度数的 k k k次方的和。
给定 n n n k k k,计算所有 n n n个点的带标号的简单无向图的价值之和。

思路:

大水题。
发现每一个点的贡献是互相独立的,因此我们考虑先算一个点的贡献,最后 ∗ n *n n即可。
因为每一个点是互相独立的,因此剩余的 n − 1 n-1 n1个点的连边与我无关,因此贡献为 2 ( n − 1 ) ( n − 2 ) 2 2^{\frac{(n-1)(n-2)}{2}} 22(n1)(n2)
考虑每一个点与其他点的连边数 i i i
n − 1 n-1 n1个点中选出 i i i个点(度数就为 i i i)的方案为 C n − 1 i C_{n-1}^{i} Cn1i,乘上度数的贡献 i k i^k ik即可。
所以:
a n s = n ∗ 2 ( n − 1 ) ( n − 2 ) 2 ∑ i = 0 n − 1 C n − 1 i i k ans=n*2^{\frac{(n-1)(n-2)}{2}}\sum_{i=0}^{n-1}C_{n-1}^{i}i^k ans=n22(n1)(n2)i=0n1Cn1iik

a n s = n ∗ 2 ( n − 1 ) ( n − 2 ) 2 ∑ i = 1 n − 1 C n − 1 i i k ans=n*2^{\frac{(n-1)(n-2)}{2}}\sum_{i=1}^{n-1}C_{n-1}^{i}i^k ans=n22(n1)(n2)i=1n1Cn1iik
我们发现后面的式子跟 CF932E Team Work \text{CF932E Team Work} CF932E Team Work是类似的 ,因此直接抄即可
当然这道题要 NTT \text{NTT} NTT处理第二类斯特林数。

代码:

#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long
const int mod=998244353,G=3,inv_G=332748118;
using namespace std;
	int r[1000010],a[1000010],b[1000010],f[1000010],g[1000010],inv[1000010],Inv[1000010];
	int n,k,limit,l,ans=0;
int dg(int x,LL k)
{
	if(!k) return 1;
	int op=dg(x,k>>1);
	if(k&1) return (LL)op*op%mod*x%mod; else return (LL)op*op%mod;
}
int get_inv(int x)
{
	return dg(x,mod-2);
}
void init(int n)
{
	limit=1,l=0;
	while(limit<(n<<1))
		limit<<=1,l++;
	for(int i=1;i<limit;i++)
		r[i]=((r[i>>1]>>1)|((i&1)<<(l-1)));
}
void NTT(int *now,int limit,int op)
{
	for(int i=0;i<limit;i++)
		if(i<r[i]) swap(now[i],now[r[i]]);
	for(int mid=1;mid<limit;mid<<=1)
	{
		int wn=dg(op==1?G:inv_G,(mod-1)/(mid<<1));
		for(int j=0;j<limit;j+=(mid<<1))
		{
			int w=1;
			for(int k=0;k<mid;k++,w=((LL)w*wn)%mod)
			{
				int x=now[j+k],y=(LL)w*now[j+k+mid]%mod;
				now[j+k]=(x+y)%mod;
				now[j+k+mid]=(x-y+mod)%mod;
			}
		}
	}
}
void dft(int *f,int n,int limit)
{
	NTT(f,limit,-1);
	int INV=get_inv(limit);
	for(int i=0;i<n;i++)
		f[i]=(LL)f[i]*INV%mod;
}
void Init()
{
	inv[0]=inv[1]=1;
	for(int i=2;i<=k;i++)
		inv[i]=((LL)mod-mod/i)*inv[mod%i]%mod;

	Inv[0]=Inv[1]=1;
	for(int i=2;i<=k;i++)
		Inv[i]=(LL)Inv[i-1]*inv[i]%mod;
}
int main()
{
	scanf("%d %d",&n,&k);
	Init();
	for(int i=0;i<=k;i++)
	{
		f[i]=(((i&1)?-1ll:1ll)*Inv[i]+mod)%mod;
		g[i]=(LL)dg(i,k)*Inv[i]%mod;
	}
	init(k+1);
	NTT(f,limit,1),NTT(g,limit,1);
	for(int i=0;i<limit;i++)
		f[i]=(LL)f[i]*g[i]%mod;
	dft(f,k+1,limit);
	int tmp=n-1;
	for(int i=1;i<=min(n-1,k);i++)
	{
		ans=((LL)ans+(LL)f[i]*tmp%mod*dg(2,n-1-i)%mod)%mod;
		tmp=(LL)tmp*(n-1-i)%mod;
	}
	printf("%d",(LL)n*dg(2,(LL)(n-1)*(n-2)/2)%mod*ans%mod);
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值