电脑耳机听音乐只有伴奏没有人声怎么办

本文介绍了一种笔记本电脑连接耳机后出现的人声缺失问题及解决方案。通过调整播放设备的平衡设置,可以临时解决该问题,但可能会导致声音质量发生变化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

笔记本:ThinkPad E450

耳机:带麦线控耳机

问题:发现笔记本插上耳机听歌的时候,只有伴奏没有人声,把耳机往外拔出一点的时候才能听到人声,但是这样又接触不良时断时续。如果按住线控耳机的按钮,声音就恢复正常了。

解决:

选择声音

选择播放-扬声器-属性

选择级别-平衡,把左前设置为0

弊端:感觉声音变了,而且可能每次调音量都得重新设置

 

而且不知道为什么以前没有这个问题,同样的电脑和耳机最近突然这样了,换了耳机也不行

据说也可以买一个 国标/美标的转换头,但嫌弃不够美观就没有进行尝试

买笔记本专用的耳机也行

或者学学我朋友 ——

 

 

 

 

 

 

 

 

 

分数阶傅里叶变换(Fractional Fourier Transform, FRFT)是对传统傅里叶变换的拓展,它通过非整数阶的变换方式,能够更有效地处理非线性信号以及涉及时频局部化的问题。在信号处理领域,FRFT尤其适用于分析非平稳信号,例如在雷达、声纳和通信系统中,对线性调频(Linear Frequency Modulation, LFM)信号的分析具有显著优势。LFM信号是一种频率随时间线性变化的信号,因其具有宽频带和良好的时频分辨率,被广泛应用于雷达和通信系统。FRFT能够更精准地捕捉LFM信号的时间和频率信息,相比普通傅里叶变换,其性能更为出色。 MATLAB是一种强大的数值计算和科学计算工具,拥有丰富的函数库和用户友好的界面。在MATLAB中实现FRFT,通常需要编写自定义函数或利用信号处理工具箱中的相关函数。例如,一个名为“frft”的文件可能是用于执行分数阶傅里叶变换的MATLAB脚本或函数,并展示其在信号处理中的应用。FRFT的正确性验证通常通过对比变换前后信号的特性来完成,比如评估信号的重构质量、信噪比等。具体而言,可以通过计算原始信号与经过FRFT处理后的信号之间的相似度,或者对比LFM信号的关键参数(如初始频率、扫频率和持续时间)是否在变换后得到准确恢复。 在MATLAB代码实现中,通常包含以下步骤:首先,生成LFM信号模型,设定其初始频率、扫频率、持续时间和采样率等参数;其次,利用自定义的frft函数对LFM信号进行分数阶傅里叶变换;接着,使用MATLAB的可视化工具(如plot或imagesc)展示原始信号的时域和频域表示,以及FRFT后的结果,以便直观对比;最后,通过计算均方误差、峰值信噪比等指标来评估FRFT的性能。深入理解FRFT的数学原理并结合MATLAB编程技巧,可以实现对LFM信号的有效分析和处理。这个代码示例不仅展示了理论知识在
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值