3341: 「SCOI2005」互不侵犯
时间限制: 1.000 Sec 内存限制: 256 MB
提交: 35 解决: 29
[命题人:][下载数据: 50]
提交状态报告
题目描述
在 N×N N \times NN×N 的棋盘里面放 K KK 个国王,使他们互不攻击,共有多少种摆放方案。国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共 8 88 个格子。
输入格式
只有一行,包含两个数 N,K N, KN,K。
输出格式
所得的方案数。
样例
样例输入
3 2
样例输出
16
数据范围与提示
1≤N≤9,0≤K≤N×N 1 \le N \le 9, 0 \le K \le N \times N1≤N≤9,0≤K≤N×N
题解
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
int n,m,k;
long long ans,f[15][100][1024];
inline bool ok(int x,int y){return !((x&(y<<1))||(x&(y>>1))||(x&y));}//判断两行可行,左右上下
inline bool ck(int x){return !((x&(x<<1))||(x&(x>>1)));}//判断一行状态可行
inline int cnt(int x){int i,ret=0;for(i=x;i;i-=i&(-i),ret++);return ret;}//返回x二进制中1的个数
void work()
{
for(int i=2;i<=n;i++)
for(int j=0;j<=m;j++)
for(int l=0;l<=k;l++)
if(ck(l)&&j>=cnt(l))
{
int tmp=cnt(l);
for(int t=0;t<=k;t++)
if(ck(t)&&ok(l,t)) f[i][j][l]+=f[i-1][j-tmp][t];
}
for(int i=0;i<=k;i++) ans+=f[n][m][i];
printf("%lld\n",ans);
}
void init()
{
scanf("%d%d",&n,&m);
k=(1<<n)-1;
for(int i=0;i<=k;i++) if(ck(i)) f[1][cnt(i)][i]=1;
}
int main()
{
init();
work();
return 0;
}
3342: 「SCOI2005」扫雷
3342: 「SCOI2005」扫雷
时间限制: 1.000 Sec 内存限制: 256 MB
提交: 73 解决: 57
[命题人:][下载数据: 70]
提交状态报告
题目描述
相信大家都玩过扫雷的游戏。那是在一个 n×m n \times mn×m 的矩阵里面有一些雷,要你根据一些信息找出雷来。
万圣节到了,「余」人国流行起了一种简单的扫雷游戏,这个游戏规则和扫雷一样,如果某个格子没有雷,那么它里面的数字表示和它 8 88 连通的格子里面雷的数目。现在棋盘是 n×2 n \times 2n×2 的,第一列里面某些格子是雷,而第二列没有雷。
由于第一列的雷可能有多种方案满足第二列的数的限制,你的任务即根据第二列的信息确定第一列雷有多少种摆放方案。
输入格式
第一行为 N NN,第二行有 N NN 个数,依次为第二列的格子中的数。
输出格式
一个数,即第一列中雷的摆放方案数。
样例
样例输入
2 1 1
样例输出
2
数据范围与提示
1≤N≤10000 1\leq N \leq 100001≤N≤10000
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
int num[10010],f[10010];
int main(){
int n;
scanf("%d",&n);
for(int i=1;i<=n;i++)scanf("%d",&num[i]);
if(n==1){if(n==0||n==1)cout<<1<<endl;else cout<<0<<endl;}
if(num[1]==2&&n>=2){
f[1]=1;
f[2]=1;
int ans=1;
for(int i=2;i<=n-1;i++){
f[i+1]=num[i]-f[i]-f[i-1];
if(f[i+1]>1||f[i+1]<0){
ans=0;break;
}
}
if(f[n]+f[n-1]!=num[n])ans=0;
cout<<ans<<endl;
}
if(num[1]==1&&n>=2){
f[1]=0;
f[2]=1;
int ans1=1;
for(int i=2;i<=n-1;i++){
f[i+1]=num[i]-f[i]-f[i-1];
if(f[i+1]>1||f[i+1]<0){
ans1=0;break;
}
}
if(f[n]+f[n-1]!=num[n])ans1=0;
f[1]=1;
f[2]=0;
int ans2=1;
for(int i=2;i<=n-1;i++){
f[i+1]=num[i]-f[i]-f[i-1];
if(f[i+1]>1||f[i+1]<0){
ans2=0;break;
}
}
if(f[n]+f[n-1]!=num[n])ans2=0;
cout<<ans1+ans2<<endl;
}
if(num[1]==0&&n>=2){
f[1]=0;
f[2]=0;
int ans=1;
for(int i=2;i<=n-1;i++){
f[i+1]=num[i]-f[i]-f[i-1];
if(f[i+1]>1||f[i+1]<0){
ans=0;break;
}
}
if(f[n]+f[n-1]!=num[n])ans=0;
cout<<ans<<endl;
}
if(num[1]>=3){cout<<0<<endl;}
return 0;
}