Point Processes and Queues

1. Martingales (鞅)

1.1 Histories of probability space

( Ω , F , P ) (\Omega,\mathcal{F},P) (Ω,F,P) probability space
( X t , t ≥ 0 ) (X_t, t\ge 0) (Xt,t0) stochastic process
定义. 随机变量生产的 σ \sigma σ-代数:In association with such a process X t X_t Xt, we define for each t ≥ 0 t\ge 0 t0 a sub- σ \sigma σ-filed of F \mathcal{F} F, denoted F t X \mathcal{F}_t^{X} FtX, by
F t X = σ ( X s , s ∈ [ 0 , t ] ) \mathcal{F}_t^{X} = \sigma(X_s, s\in[0,t]) FtX=σ(Xs,s[0,t])

举例:随机变量生成的 σ \sigma σ-代数,指的是一组特殊事件组成的集合:这些事件是否发生,可以通过随机变量的取值明确判断出来。举个例子吧。
比如今天可能下雨也可能不下,下雨时随机变量 X = 1 X=1 X=1,反之 X = 0 X=0 X=0。然而,下不下雨只是“今天”的一个属性,其它属性,比如我早饭吃的是火腿还是培根,也是全世界所包含的信息的一部分。
假设整个概率空间由下面这些元素组成:
[火腿,下雨]:概率0.25,X = 1
[火腿,不下雨]:概率0.25,X = 0
[培根,下雨]:概率0.25,X = 1
[培根,不下雨]:概率0.25,X = 0
这时,X生成的代数包括下面三个非空集合:
{X = 1} = {[火腿,下雨],[培根,下雨]}
{X = 0} = {[火腿,不下雨],[培根,不下雨]}
{X = 0或1} = {[火腿,不下雨],[培根,不下雨],[火腿,下雨],[培根,下雨]}
可见不管X=1还是0,我都既有可能吃火腿,也有可能吃培根;从X的取值里,你得不到任何关于我早饭吃了什么的信息。因此“早饭吃培根”这一事件,就被排除在X生成的代数之外了。具体来说:早饭吃培根 = {{培根,下雨},{培根,不下雨}},不属于X生成的代数。

定义. Let Y Y Y be a R k \mathbb{R}^k Rk- valued process such that for each t ≥ 0 t\ge 0 t0, Y t Y_t Yt is F t X \mathcal{F}_t^X FtX-measurable, a well-known representation result on measurability states that
Y = ϕ ( X s , s ∈ S ) Y=\phi(X_s,s\in S) Y=ϕ(Xs,sS) where S S S is a countable subset of [ 0 , t ] [0,t] [0,t] and ϕ \phi ϕ is a borelian function(Borel函数) from R n ∣ S ∣ \mathbb{R}^{n|S|} RnS into R k \mathbb{R}^k Rk.
We say Y t Y_t Yt is adapted to F t X \mathcal{F}_t^X FtX, if
Y t = ψ t ( X 0 t ) Y_t=\psi_t(X_0^t) Yt=ψt(X0t) for some ψ t \psi_t ψt, i.e., Y t Y_t Yt depends causally on X t X_t Xt.

If F t ⊇ F t X \mathcal{F}_t\supseteq\mathcal{F}_t^X FtFtX, then F t \mathcal{F}_t Ft is called a history of X t X_t Xt, and X t X_t Xt is adapted to F t \mathcal{F}_t Ft.

定义. 停时(stopping time) 一类随机时刻,指具有某种与将来无关性质的随机时刻。给定概率空间 ( Σ , F , P ) (\Sigma,\mathcal{F},P) (ΣFP)及其滤子 F t \mathcal{F}_t Ft,映射 τ : Σ → T ∪ { ∞ } \tau:\Sigma→T\cup\{\infty\} τΣT{},如果对任意的 t ∈ I t∈I tI { ω : ω ∈ Σ , τ ( ω ) ≤ t } ∈ F t \{\omega:\omega\in\Sigma,τ(ω)≤t\}\in\mathcal{F}_t {ω:ωΣτ(ω)t}Ft,则称映射 τ \tau τ为一个 F t \mathcal{F}_t Ft停时。

1.2 Martingale

A history is given on the probability space ( Ω , F , P ) (\Omega,\mathcal{F},P) (Ω,F,P). A ( P , F t ) (P,\mathcal{F}_t) (P,Ft)-martingale over [ 0 , c ] [0,c] [0,c] is a real-valued stochastic process X t X_t Xt such that:
(1) X t X_t Xt is adapted to F t \mathcal{F}_t Ft,
(2) X t X_t Xt is P P P-integrable, i.e., E [ ∣ X t ∣ ] < ∞ , ∀ t ∈ [ 0 , c ] E[|X_t|]<\infty,\forall t\in[0,c] E[Xt]<,t[0,c]
(3) for all 0 ≤ s ≤ t ≤ c 0\leq s\leq t\leq c 0stc, E [ X t ∣ F s ] = X s E[X_t|\mathcal{F}_s]=X_s E[XtFs]=Xs, P − a . s P-a.s Pa.s (almost surely).

1.3 Levy Formula

Let X t X_t Xt be a right-continuous N + N_+ N+-valued F t \mathcal{F}_t Ft-Markov chain which is stable and conservative and admits the Q Q Q-matrix ( q i j : i , j ∈ N + ) (q_{ij}:i,j\in N_+) (qij:i,jN+). If f f f is a nonnegative function from N + × N + N_+\times N_+ N+×N+ into R + R_+ R+, then for any 0 ≤ s ≤ t 0\leq s\leq t 0st, the Levy formulat holds:
E [ ∑ s < u ≤ t f ( X u − , X u ) ∣ σ ( X s ) ] = E [ ∫ s t ∑ j ≠ X u q X u j f ( X u , j ) d u ∣ σ ( X s ) ] E\left[ \mathop{\sum}\limits_{s<u\leq t} f(X_{u^-},X_u) \Big| \sigma(X_s) \right] = E\left[ \int_s^t \mathop{\sum}\limits_{j\neq X_u} q_{X_uj} f(X_u, j) du \Big| \sigma(X_s) \right] E[s<utf(Xu,Xu)σ(Xs)]=Estj=XuqXujf(Xu,j)duσ(Xs)

1.4 Radon-Nikodyn Derivatives (likeihood ratios)

Let P P P and Q Q Q be two probability measures defined on the same measurable space ( Σ , F ) (\Sigma,\mathcal{F}) (Σ,F), and let F t \mathcal{F}_t Ft be a history. For each t ≥ 0 t\ge 0 t0, denote by P t P_t Pt and Q t Q_t Qt the restrictions of P P P and Q Q Q to F t \mathcal{F}_t Ft respectively. Suppose that for some c ≥ 0 c\ge 0 c0, Q c Q_c Qc is absolutely continuous with respect to P c P_c Pc. Then clearly, for all t ∈ [ 0 , c ] t\in[0,c] t[0,c], Q t Q_t Qt is absolutely continuous with respect to P t P_t Pt. Define
L t : = d Q t d P t L_t := \frac{dQ_t}{dP_t} Lt:=dPtdQt to be the Radon-Nikodym derivation of Q t Q_t Qt with respect to P t P_t Pt.

Proposition. L t L_t Lt is a ( P , F t ) (P,\mathcal{F}_t) (P,Ft)-martingale over [ 0 , c ] [0,c] [0,c].

1.5 Predictability

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
Exercise. Given a stopping time τ \tau τ, let
I n = { 1 , if  n ≤ τ 0 , if  n > τ I_n = \begin{cases} 1, & \text{if }n\leq\tau \\ 0, & \text{if }n>\tau \end{cases} In={1,0,if nτif n>τ Show that ( I n ) n ≥ 1 (I_n)_{n\ge 1} (In)n1 is a predictable process.

2. Girsanov Theorem

定理1. If P P P and Q Q Q are equivalent measures, and X t X_t Xt is an F t \mathcal{F}_t Ft-adpated process then the following results hold:
E Q ( X t ) = E P ( X t d Q d P ) E_Q(X_t)=E_P\left(X_t\frac{dQ}{dP}\right) EQ(Xt)=EP(XtdPdQ)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zte10096334

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值