泊松点过程Poisson-point-process

本文介绍了泊松点过程的概念,包括二维和三维的泊松点过程模拟,其中点在区域内均匀分布,距离服从指数分布。通过MATLAB程序展示了如何生成随机点并绘制Voronoi图。此外,还提到了泊松簇过程的模拟方法,以及如何结合泊松点过程生成Delaunay三角剖分图。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

介绍

概念解释

首先我们要清楚的是泊松过程是一个 计数过程 。对于二维或者三维的PPP而言,随机抽样出来的样本点在范围内服从均匀分布,样本点之间的距离服从指数分布。这句话我并没有去深入理解研究,我看了中外多种资料后得到了个人对于同质泊松点过程的理解如下:

PPP的解释公式

以上是特意针对与泊松点分布的公式,这里与一般的泊松过程有所不同(或许是相同的只是我不懂(ˉ▽ˉ;)… )。其中 λ \lambda λ就是给定的一个参数,可以称为密度, ∣ B ∣ |B| B代表着一个数学区域,通俗来说就是给定的二维平面或者三维空间(高维可不用考虑了,没必要)。记 Λ = λ ∣ B ∣ \Lambda = \lambda |B| Λ=

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值