3.1    \; 在3.2.1节中,我们假设只有在 I ( t − ) = 0 I(t^-)=0 I(t−)=0(零库存特征)时下达订单。本习题说明其原因。为了简单起见,假设 L = 0 L=0 L=0 且 I ( 0 − ) = I O ( 0 − ) = 0 I(0^-)=IO(0^-)=0 I(0−)=IO(0−)=0,因此我们必须在时刻 0 订货。任何策略都可以通过订货时间的递增序列 { t i : i ≥ 1 } \{t_i:i\ge 1\} {
ti:i≥1} 和相应的正订货数量序列 { q i : i ≥ 1 } \{q_i:i\ge 1\} {
qi:i≥1} 来进行描述。只考虑可行的策略,此时 I ( t ) ≥ 0 I(t)\ge 0 I(t)≥0,每个有限的时间间隔内具有有限多个订货时点 t i t_i ti。
\qquad 考虑一种违反零库存假设的策略。对于 I ( t i − ) > 0 I(t_i^-)>0 I(ti−)>0,选择 j j j 为最小的 i i i 值。通过将时点 t j t_j tj 的订货推迟到 t j ∗ = min { t j + I ( t j − ) / λ , t j + 1 } t_j^*=\min\{t_j+I(t_j^-)/{\lambda},t_{j+1}\} tj∗=min{
tj+I(tj−)/λ,tj+1} 来构建一个新的策略。证明如果有必要,如何调整某些 q i q_i qi,以使在 t ≥ t j ∗ t\ge t_j^* t≥tj∗ 时 I ( t ) I(t) I(t) 保持与以前一样。证明新的策略是可行的,并且比老策略更优秀,即其在每一个有限的时间间隔内成本更低。
3.2    \; 本习题证明了3.2.1节中的另一个假设(所有的订单批量都是一样的)是合理的。考虑一个具有零库存特性的策略。令 O F ( t ) OF(t) OF(t)为订单的数量, C ( t ) C(t) C(t) 为时间间隔 [ 0 , t ) [0,t) [0,t) 内的总成本,保持 t t t 和 O F ( t ) OF(t) OF(t) 不变。
(1)证明在具有该 O F ( t ) OF(t) OF(t) 的所有策略中,在相等的时间间隔 u = t / O F ( t ) u=t/{OF(t)} u=t/OF(t) 中订购相等数量 q = λ t / O F ( t ) q=\lambda t/{OF(t)} q=λt/OF(t) 的策略使 C ( t ) C(t) C(t) 最小。
(2)另外,证明 C ( t ) C(t) C(t) 的最小值为 [ k / u + 1 / 2 h λ u ] t [k/u+1/2h\lambda u]t [k/u+1/2hλu]t。
(3)对于每一个可行策略和所有 t t t,说明 C ( t ) ≥ ( 2 k λ h ) 1 / 2 t C(t)\ge (2k\lambda h)^{1/2}t C(t)≥