库存管理习题:第三章

3.1    \; 在3.2.1节中,我们假设只有在 I ( t − ) = 0 I(t^-)=0 I(t)=0(零库存特征)时下达订单。本习题说明其原因。为了简单起见,假设 L = 0 L=0 L=0 I ( 0 − ) = I O ( 0 − ) = 0 I(0^-)=IO(0^-)=0 I(0)=IO(0)=0,因此我们必须在时刻 0 订货。任何策略都可以通过订货时间的递增序列 { t i : i ≥ 1 } \{t_i:i\ge 1\} {ti:i1} 和相应的正订货数量序列 { q i : i ≥ 1 } \{q_i:i\ge 1\} {qi:i1} 来进行描述。只考虑可行的策略,此时 I ( t ) ≥ 0 I(t)\ge 0 I(t)0,每个有限的时间间隔内具有有限多个订货时点 t i t_i ti
\qquad 考虑一种违反零库存假设的策略。对于 I ( t i − ) > 0 I(t_i^-)>0 I(ti)>0,选择 j j j 为最小的 i i i 值。通过将时点 t j t_j tj 的订货推迟到 t j ∗ = min ⁡ { t j + I ( t j − ) / λ , t j + 1 } t_j^*=\min\{t_j+I(t_j^-)/{\lambda},t_{j+1}\} tj=min{tj+I(tj)/λ,tj+1} 来构建一个新的策略。证明如果有必要,如何调整某些 q i q_i qi,以使在 t ≥ t j ∗ t\ge t_j^* ttj I ( t ) I(t) I(t) 保持与以前一样。证明新的策略是可行的,并且比老策略更优秀,即其在每一个有限的时间间隔内成本更低。

3.2    \; 本习题证明了3.2.1节中的另一个假设(所有的订单批量都是一样的)是合理的。考虑一个具有零库存特性的策略。令 O F ( t ) OF(t) OF(t)为订单的数量, C ( t ) C(t) C(t) 为时间间隔 [ 0 , t ) [0,t) [0,t) 内的总成本,保持 t t t O F ( t ) OF(t) OF(t) 不变。
(1)证明在具有该 O F ( t ) OF(t) OF(t) 的所有策略中,在相等的时间间隔 u = t / O F ( t ) u=t/{OF(t)} u=t/OF(t) 中订购相等数量 q = λ t / O F ( t ) q=\lambda t/{OF(t)} q=λt/OF(t) 的策略使 C ( t ) C(t) C(t) 最小。
(2)另外,证明 C ( t ) C(t) C(t) 的最小值为 [ k / u + 1 / 2 h λ u ] t [k/u+1/2h\lambda u]t [k/u+1/2hλu]t
(3)对于每一个可行策略和所有 t t t,说明 C ( t ) ≥ ( 2 k λ h ) 1 / 2 t C(t)\ge (2k\lambda h)^{1/2}t C(t)(2kλh)1/2t

3.3    \; 考虑一下3.2.2节中的函数 C ( q ) C(q) C(q),即EOQ模型中的平均总成本。证明这个函数对于 q q q 来说是严格凸的。

3.4    \; 在3.2节的EOQ模型中,假设下达一个订单的固定成本是100美元,需求是50吨/年,持有成本是每周每磅0.015385美元(1吨等于2000磅,每年有52周)。计算最优订货批量和最优平均成本。

3.5    \; 考虑下面对EOQ模型的变形:我们的存储空间只能容纳 I + I_+ I+ 数量单位。如果库存超过了 I + I_+ I+,我们就需要租用额外的空间来放置多余的库存。租用空间的成本率为 h + > h h_+>h h+>h。证明现在的总平均成本变成了:
C ( q ) = c λ + k λ q + 1 2 h q + { 1 2 h + ( q 2 − I + 2 ) q − 1 2 h ( q − I + ) 2 q 如果   q > I + } C(q)=c\lambda + \frac{k\lambda}{q}+\frac{1}{2}hq+\left\{\frac{1}{2}\frac{h_+(q^2-I_+^2)}{q}-\frac{1}{2}\frac{h(q-I_+)^2}{q}\qquad\text{如果}\,q>I_+\right\} C(q)=cλ+qkλ+21hq+{21qh+(q2I+2)21qh(qI+)2如果q>I+}(1)证明这个函数连续可微且为凸函数。
(2)证明 q ∗ q^* q 的计算如下:首先像在EOQ模型中一样计算 q ∗ q^* q,如果 q ∗ ≤ I + q^*\leq I_+ qI+,则停止计算;否则,重置 q ∗ = I + + 2 k λ − h I + 2 h + q^*=I_++\sqrt{\frac{2k\lambda -hI_+^2}{h_+}} q=I++h+2kλhI+2

3.6    \; 证明在EOQ模型中描述次优 q q q 值相对成本的公式(3.2.5)。计算 q / q ∗ = 2 q/{q^*}=2 q/q=2 q / q ∗ = 1 / 2 q/{q^*}=1/{\sqrt{2}} q/q=1/2 时的值。

3.7    \; 对于 x > 0 x>0 x>0,定义函数 F ( x ) F(x) F(x) 为: F ( x ) = a x − a + b x β F(x)=ax^{-a}+bx^{\beta} F(x)=axa+bxβ其中 a , α , b , β a,\alpha,b,\beta a,α,b,β 都为正的常数。考虑 F F F x x x 的最小化问题。证明唯一最优解为 x ∗ = ( α a / β b ) 1 / ( α + β ) x^*=\left({\alpha a}/{\beta b}\right)^{1/(\alpha+\beta)} x=(αa/βb)1/(α+β)。另外,证明 F ( x ∗ ) = ( α + β ) [ ( a / β ) β ( b / α ) α ] 1 / ( α + β ) F(x^*)=(\alpha+\beta)[(a/\beta)^\beta(b/\alpha)^\alpha]^{1/(\alpha+\beta)} F(x)=(α+β)[(a/β)β(b/α)α]1/(α+β)

3.8    \; 在本章中,我们假设产品是无限可分的,而且需求是连续发生的。这一习题证明了EOQ模型也描述了一种离散的情况。
\qquad 假设需求发生在一些离散的时间点,时间间隔为 1 / λ 1/\lambda 1/λ,单位大小为 1 1 1。我们的订货批量 q q q 是一个正整数,因此每批货物都会在最迟可行时间到达。证明 O F ‾ = λ / q , I ‾ = 1 / 2 ( q − 1 ) \overline{OF}=\lambda/q, \overline{I}=1/2(q-1) OF=λ/q,I=1/2(q1),并且 C ( q ) = c λ + k λ q + 1 2 h ( q − 1 ) C(q)=c\lambda+\frac{k\lambda}{q}+\frac{1}{2}h(q-1) C(q)=cλ+qkλ+21h(q1) Δ C ( q ) = C ( q + 1 ) − C ( q ) \Delta C(q)=C(q+1)-C(q) ΔC(q)=C(q+1)C(q) 表示一阶差分算子。最优解 q = q ∗ q=q^* q=q 满足 Δ C ( q − 1 ) &lt; 0 ≤ Δ C ( q ) \Delta C(q-1)&lt;0\leq \Delta C(q) ΔC(q1)<0ΔC(q)。证明这一条件相当于: q ( q − 1 ) &lt; 2 k λ h ≤ q ( q + 1 ) q(q-1)&lt;\frac{2k\lambda}{h}\leq q(q+1) q(q1)<h2kλq(q+1) q c ∗ q_c^* qc 表示EOQ公式中连续需求的最优解 q q q。证明如果 q c ∗ q_c^* qc 恰好为整数,则 q ∗ = q c ∗ q^*=q_c^* q=qc,否则 q ∗ q^* q 可以通过对 q c ∗ q_c^* qc 取整得到,不论是向上取整还是向下取整。
\qquad 显然,如果需求量为某一数值 Y Y Y 而不是 1 1 1 时,这一方法也是有效的。现在回到连续的情况下,但假定订货周期 u u u 为整数。说明按上述方法进行调整后如何计算 u ∗ u^* u。最后,当 u u u 必须为某一任意基准期 u ‾ \underline{u} u 的整数倍时,说明该怎么做。

3.9 &ThickSpace; \; 在3.3节有计划的延期交货模型中,假设参数为: λ = 1000 k = 60 h = 0.75 w = 0.81 \lambda=1000\qquad k=60\qquad h=0.75\qquad w=0.81 λ=1000k=60h=0.75w=0.81计算最优策略和最优平均成本(除 c λ c\lambda cλ 之外)。现在,假设我们安装了一套计算机系统来处理,将 k k k 从 60 减少到 33.75。这对最优策略和最优成本有什么影响?

3.10 &ThickSpace; \; 定义函数 C ^ ( x ) = h [ x ] + + b [ x ] − \hat C(x)=h[x]^++b[x]^- C^(x)=h[x]++b[x] C − ( y ) = C ^ ( y − D ) C_-(y)=\hat C(y-D) C(y)=C^(yD)。证明有缺货订单情况下EOQ模型的成本函数可以表示为 C ( r , q ) = c λ + k λ + ∫ r r + q C − ( y ) d y q C(r,q)=c\lambda+\frac{k\lambda+\int_r^{r+q}C_ -(y)dy}{q} C(r,q)=cλ+qkλ+rr+qC(y)dy

3.11 &ThickSpace; \; 下面是处理延期交货的另一种方法:我们不采用惩罚成本或者约束条件,而是对这一产品的市场等待时间 B W ‾ \overline{BW} BW 建模。 B W ‾ \overline{BW} BW 会影响消费者愿意支付的价格 p p p,或他们愿意购买的数量,或者对两者都产生影响。具体而言, p , λ p,\lambda p,λ B W ‾ \overline{BW} BW 的关系用下式表示: λ = α [ p f ( B W ‾ ) ] − β \lambda=\alpha [pf(\overline{BW})]^{-\beta} λ=α[pf(BW)]β 其中 α , β \alpha, \beta α,β 是正常量, β &gt; 1 \beta&gt;1 β>1 f f f 是增函数, f ( 0 ) = 1 f(0)=1 f(0)=1。因此,随着 B W ‾ \overline{BW} BW 的增大, λ \lambda λ 下降,或者 p p p 下降,或者两者都下降。单位购买成本 c c c 保持不变。
\qquad 用时间变量 u u u y y y 来描述库存策略。回顾一下, B W ‾ = 1 / 2 y 2 / u \overline{BW}=1/2y^2/u BW=1/2y2/u。首先,考虑 u u u y y y 以及 B W ‾ \overline{BW} BW 是不变的。所以,我们仍然是需要选择 p p p λ \lambda λ。计算令总平均利润 P ( λ ) P(\lambda) P(λ) 最大的 λ \lambda λ 值,即平均收入 p λ p\lambda pλ 减去所有相关成本。
\qquad 现在,把 u u u y y y 以及 λ \lambda λ 看成是可变的,建立一个函数 P ( u , y , λ ) = P(u,y,\lambda)= P(u,y,λ)= 单位时间中平均利润。写出一个总体最优策略的一阶必要条件。

3.11 &ThickSpace; \; 在有计划的延期交货模型中,假设没有惩罚成本 b b b,但 B W ‾ \overline{BW} BW 有一个上限,用 B W + BW_+ BW+ 表示。则问题变成了: 最小化 c λ + k λ q + 1 2 h ( q + v ) 2 q \text{最小化}\qquad c\lambda+\frac{k\lambda}q+\frac{1}{2}\frac{h(q+v)^2}q 最小化cλ+qkλ+21qh(q+v)2 约束条件 B W ‾ ≤ B W + &ThickSpace; , &ThickSpace; − 1 ≤ v ≤ 0 \text{约束条件}\qquad \overline{BW}\leq BW_+\;,\;-1\leq v\leq 0 约束条件BWBW+,1v0证明最后两个不等式可以被消除,剩下的约束条件简化为 1 / 2 v 2 / q = λ B W + 1/2v^2/q=\lambda BW_+ 1/2v2/q=λBW+。为这一等式引入一个拉格朗日乘数(对偶变量) π \pi π,定义一个恰当的拉格朗日函数,推导出最优一阶必要条件。利用这些条件得到用 π ∗ \pi^* π 表示的 v ∗ v^* v q ∗ q^* q,以及关于 π \pi π 本身的多项式方程。证明 π \pi π 与纯粹成本最优化模型中 b b b 的作用是一样的。

  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zte10096334

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值