Robust Optimization

一个科研设想:对于离散的动态规划问题,可以用鲁棒优化类似处理;对于连续的动态规划问题,是否有响应的鲁棒优化理论?

Recall that Linear Optimization (LO) problem is of the form (1) min ⁡ x { c T x + d : A x ≤ b } \min_x\{c^Tx+d:Ax\leq b\}\tag{1} xmin{cTx+d:Axb}(1) where x ∈ R n x\in\mathbf{R}^n xRn is the vector of decision variables, c ∈ R n c\in\mathbf{R}^n cRn and d ∈ R d\in\mathbf{R} dR form the objective, A A A is an m × n m\times n m×n constraint matrix, and b ∈ R m b\in\mathbf{R}^m bRm is the right hand side vector. The stucture of the problem can be given by the following data matrix
D = [ C T d A b ] . D=\begin{bmatrix} C^T & d \\ A &b\end{bmatrix}. D=[CTAdb].

Definition 1. An uncertain Linear Optimization problem ( LO U ) (\text{LO}_\mathcal{U}) (LOU) is a collection (2) { min ⁡ x { c T + d : A x ≤ b } } ( c , d , A , b ) ∈ U \{\min_x\{c^T+d:Ax\leq b\}\}_{(c,d,A,b)\in\mathcal{U}}\tag{2} {xmin{cT+d:Axb}}(c,d,A,b)U(2) of LO problems (instances) min ⁡ x { c T x + d : A x ≤ b } \min_x\{c^Tx+d:Ax\leq b\} minx{cTx+d:Axb} of common structure (i.e., with common numbers m m m of constraints and n n n of variables) with the data varying in a given uncertainty set    U ⊂ R ( m + 1 ) × ( n + 1 ) \;\mathcal{U}\subset\mathbf{R}^{(m+1)\times(n+1)} UR(m+1)×(n+1).

The uncertainty set can be parameterized, in an affine fashion, by pertubation vector ζ \zeta ζ varying in a given pertubation set Z \mathcal{Z} Z:
(3) U = { [ c T d A b ] = [ c 0 T d 0 A 0 b 0 ] ⎵ nominal data  D 0 + ∑ ℓ = 1 L ζ ℓ [ c ℓ T d ℓ A ℓ b ℓ ] ⎵ basic shifts  D ℓ : ζ ∈ Z ⊂ R L } \mathcal{U}=\left\{\begin{bmatrix}c^T&d\\ A &b\end{bmatrix} = \underbrace{\begin{bmatrix}c_0^T&d_0\\ A_0 &b_0\end{bmatrix}}_{\text{nominal data } D_0} + \sum_{\ell=1}^{L}\zeta_{\ell} \underbrace{\begin{bmatrix}c_\ell^T&d_\ell\\ A_\ell &b_\ell\end{bmatrix}}_{\text{basic shifts } D_\ell} : \zeta\in\mathcal{Z}\subset\mathbf{R}^L \right\}\tag{3} U=[cTAdb]=nominal data D0 [c0TA0d0b0]+=1Lζbasic shifts D [cTAdb]:ζZRL(3)

Definition 2. A vector x ∈ R n x\in\mathbf{R}^n xRn is a robust feasible solution to ( LO U ) (\text{LO}_\mathcal{U}) (LOU), if it satisfies all realizations of the constraints from the uncertainty set, that is (4) A x ≤ b , ∀ ( c , d , A , b ) ∈ U Ax\leq b,\qquad \forall(c,d,A,b)\in\mathcal{U}\tag{4} Axb,(c,d,A,b)U(4)

Definition 3. Given a candidate solution x x x, the robust value c ^ ( x ) \hat{c}(x) c^(x) of the objective in ( LO U ) (\text{LO}_\mathcal{U}) (LOU) at x x x is the largest value of the “true” objective c T + d c^T+d cT+d over all realizations of the data from the uncertainty set: (5) c ^ ( x ) = sup ⁡ ( c , d , A , b ) ∈ U [ c T x + d ] \hat{c}(x)=\sup_{(c,d,A,b)\in\mathcal{U}}\left[c^Tx+d\right]\tag{5} c^(x)=(c,d,A,b)Usup[cTx+d](5)

Definition 4. The Robust Counterpart of the uncertain LO problem ( LO U ) (\text{LO}_\mathcal{U}) (LOU) is the optimization problem (6) min ⁡ x { c ^ ( x ) = sup ⁡ ( c , d , A , b ) ∈ U [ c T + d ] : A x ≤ b , ∀ ( c , d , A , b ) ∈ U } \min_x\left\{\hat{c}(x)=\sup_{(c,d,A,b)\in\mathcal{U}}\left[c^T+d\right]:Ax\leq b, \forall (c,d,A,b)\in\mathcal{U}\right\}\tag{6} xmin{c^(x)=(c,d,A,b)Usup[cT+d]:Axb,(c,d,A,b)U}(6) of minimizing the robust value of the objective over all robust feasible solutions to the uncertian problem.

OBSERVATIONS.
A. The Robust Counterpart of LO U \text{LO}_\mathcal{U} LOU can be rewritten equivalently as the problem (7) min ⁡ x { t    :    c T − t ≤ − d ,   A x ≤ b ,    ∀ ( c , d , A , b ) ∈ U } \min_x\left\{t\;:\;c^T-t\leq -d,\,Ax\leq b,\;\forall (c,d,A,b)\in\mathcal{U}\right\}\tag{7} xmin{t:cTtd,Axb,(c,d,A,b)U}(7)
B. The Robust Counterpart of uncertain LO problem with certain objective min ⁡ x { c T + d : A x ≤ b , ∀ ( A , b ) ∈ U } \min_x\{c^T+d:Ax\leq b, \forall (A,b)\in\mathcal{U}\} xmin{cT+d:Axb,(A,b)U} is purely “constraint-wise” construction: to get RC, we act as follows:
(1) preserve the original certain objective as it is, and
(2) replace every one of the original constraints (8) ( A x ) i ≤ b i ⇔ a i T x ≤ b i (Ax)_i\leq b_i\Leftrightarrow a_i^Tx\leq b_i\tag{8} (Ax)ibiaiTxbi(8) ( a i T a_i^T aiT is i i i-th row in A A A) with its Robust Counterpart (9) a i T x ≤ b i , ∀ [ a i , b i ] ∈ U i a_i^Tx\leq b_i, \forall[a_i,b_i]\in\mathcal{U}_i\tag{9} aiTxbi,[ai,bi]Ui(9) where U i \mathcal{U}_i Ui is the projection of U \mathcal{U} U on the space of data of i i i-th constraint: U i = { [ a i , b i ] : [ A , b ] ∈ U } . \mathcal{U}_i=\{[a_i,b_i]:[A,b]\in\mathcal{U}\}. Ui={[ai,bi]:[A,b]U}. The RC of uncertain LO problem with certain objective remains intact when the original uncertainty set U \mathcal{U} U is extended to the direct product   U ^ = U 1 × ⋯ × U m \,\hat\mathcal{U}=\mathcal{U}_1\times\cdots\times\mathcal{U}_m U^=U1××Um of its projections onto the spaces of data of respective constraints.

C. If x x x is a robust feasible solution of (8), then x x x remains robust feasible when we extend the uncertainty set   U i \,\mathcal{U}_i Ui to its convex hull Conv ( U i ) \text{Conv}(\mathcal{U}_i) Conv(Ui).

D. When modeling an uncertain LO problem one should avoid whenever possible converting inequality constraints into equality ones, unless all the data in the constraints in question are certain.

Definition 5. A set X + ⊂ R x n × R u k X^+\subset \mathbf{R}_x^n\times\mathbf{R}_u^k X+Rxn×Ruk is said to represent a set X ⊂ R x n X\subset\mathbf{R}_x^n XRxn, if the projection of X + X^+ X+ onto the space of x x x-variables is exactly X X X.

Why the representation argument is important? A representation can posses desired properties which are absent in the original problem. Such strategy allows us to focus on a single uncertainty-affected linear inequality: a family { a T x ≤ b } [ a , b ] ∈ U \{a^Tx\leq b\}_{[a,b]\in\mathcal{U}} {aTxb}[a,b]U of linear inequalities with the data varying in the uncertainty set (10) U = { [ a ; b ] = [ a 0 ; b 0 ] + ∑ ℓ = 1 L ζ ℓ [ a ℓ , b ℓ ] : ζ ∈ Z } \mathcal{U}=\left\{[a;b]=[a^0;b^0]+\sum_{\ell=1}^L\zeta_{\ell}[a^{\ell},b^{\ell}]:\zeta\in\mathcal{Z}\right\}\tag{10} U={[a;b]=[a0;b0]+=1Lζ[a,b]:ζZ}(10) naming tractable representation.

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
written by Aharon Ben-Tal Laurent El Ghaoui Arkadi Nemirovski Copyright © 2009 by Princeton University Press PART I. ROBUST LINEAR OPTIMIZATION 1 Chapter 1. Uncertain Linear Optimization Problems and their Robust Counterparts 3 1.1 Data Uncertainty in Linear Optimization 3 1.2 Uncertain Linear Problems and their Robust Counterparts 7 1.3 Tractability of Robust Counterparts 16 1.4 Non-Affine Perturbations 23 1.5 Exercises 25 1.6 Notes and Remarks 25 Chapter 2. Robust Counterpart Approximations of Scalar Chance Constraints 27 2.1 How to Specify an Uncertainty Set 27 2.2 Chance Constraints and their Safe Tractable Approximations 28 2.3 Safe Tractable Approximations of Scalar Chance Constraints: Basic Examples 31 2.4 Extensions 44 2.5 Exercises 60 2.6 Notes and Remarks 64 Chapter 3. Globalized Robust Counterparts of Uncertain LO Problems 67 3.1 Globalized Robust Counterpart — Motivation and Definition 67 3.2 Computational Tractability of GRC 69 3.3 Example: Synthesis of Antenna Arrays 70 3.4 Exercises 79 3.5 Notes and Remarks 79 Chapter 4. More on Safe Tractable Approximations of Scalar Chance Constraints 81 4.1 Robust Counterpart Representation of a Safe Convex Approximation to a Scalar Chance Constraint 81 4.2 Bernstein Approximation of a Chance Constraint 83 4.3 From Bernstein Approximation to Conditional Value at Risk and Back 90 4.4 Majorization 105 4.5 Beyond the Case of Independent Linear Perturbations 109 4.6 Exercises 136 4.7 Notes and Remarks 145 PART II. ROBUST CONIC OPTIMIZATION 147 Chapter 5. Uncertain Conic Optimization: The Concepts 149 5.1 Uncertain Conic Optimization: Preliminaries 149 5.2 Robust Counterpart of Uncertain Conic Problem: Tractability 151 5.3 Safe Tractable Approximations of RCs of Uncertain Conic Inequalities 153 5.4 Exercises 156 5.5 Notes and Remarks 157 Chapter 6. Uncertain Conic Quadratic Problems with Tractable RCs 159 6.1 A Generic Solvable Case: Scenario Uncertainty 159 6.2 Solvable Case I: Simple Interval Uncertainty 160 6.3 Solv

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zte10096334

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值