【动态规划】回文串问题

一、经验总结

  • 对于回文串问题,传统的以i位置为结尾的状态表示已经不能满足要求,无法推导状态转移方程。应该创建一个二维dp表,将所有子串[i, j]的状态表示出来
  • 二维dp表的初始化和填表顺序略微复杂,有时需要借助网格图像分析

二、相关编程题

2.1 回文子串

题目链接

647. 回文子串 - 力扣(LeetCode)

题目描述

在这里插入图片描述

算法原理

在这里插入图片描述

编写代码

class Solution {
public:
    int countSubstrings(string s) {
        int n = s.size();
        vector<vector<bool>> dp(n, vector<bool>(n));
        int ret = 0;
        for(int i = n-1; i >= 0; --i) //从下往上
        {
            for(int j = i; j < n; ++j) //j>=i
            {
                if(s[i] == s[j])
                    dp[i][j] = i+1<j? dp[i+1][j-1]:true;
                if(dp[i][j]) ++ret;
            }
        }
        return ret;
    }
};

2.2 最长回文子串

题目链接

5. 最长回文子串 - 力扣(LeetCode)

题目描述

在这里插入图片描述

算法原理

在这里插入图片描述

编写代码

class Solution {
public:
    string longestPalindrome(string s) {
        int n = s.size();
        vector<vector<bool>> dp(n, vector<bool>(n));
        int maxlen=0, begin=0;
        for(int i = n-1; i >= 0; --i)
        {
            for(int j = i; j < n; ++j)
            {
                if(s[i] == s[j])
                    dp[i][j] = i+1<j? dp[i+1][j-1]:true;
                if(dp[i][j] && maxlen<j-i+1)
                {
                    maxlen = j-i+1;
                    begin = i;
                }
            }
        }
        return s.substr(begin, maxlen);
    }
};

2.3 分割回文串Ⅳ

题目链接

1745. 分割回文串 IV - 力扣(LeetCode)

题目描述

在这里插入图片描述

算法原理

见代码

编写代码

class Solution {
public:
    bool checkPartitioning(string s) {
        //1.预处理:用dp表统计所有的子串是否是回文串
        int n = s.size();
        vector<vector<bool>> dp(n, vector<bool>(n));
        for(int i = n-1; i >= 0; --i)
        {
            for(int j = i; j < n; ++j)
            {
                if(s[i] == s[j])
                    dp[i][j] = i+1<j? dp[i+1][j-1]:true;
            }
        }
        //2.分割检查:枚举所有的第二个子字符串的起始及结束位置
        for(int i = 1; i < n-1; ++i)
        {
            for(int j = i; j < n-1; ++j)
            {
                if(dp[0][i-1] && dp[i][j] && dp[j+1][n-1])
                    return true;
            }
        }
        return false;
    }
};

2.4 分割回文串Ⅱ

题目链接

132. 分割回文串 II - 力扣(LeetCode)

题目描述

在这里插入图片描述

算法原理

在这里插入图片描述

编写代码

class Solution {
public:
    int minCut(string s) {
        //1.预处理:用dp1表统计所有的子串是否是回文串
        int n = s.size();
        vector<vector<bool>> dp1(n, vector<bool>(n));
        for(int i = n-1; i >= 0; --i)
        {
            for(int j = i; j < n; ++j)
            {
                if(s[i] == s[j])
                    dp1[i][j] = i+1<j? dp1[i+1][j-1]:true;
            }
        }
        //2.动态规划:用dp2表统计[0,i]区间上的最少分割次数
        vector<int> dp2(n, INT_MAX);
        for(int i = 0; i < n; ++i)
        {
            if(dp1[0][i]) 
                dp2[i] = 0;
            else
            {
                //将[0,i]分割成[0,j-1]和[j,i]
                for(int j = 1; j <= i; ++j)
                    if(dp1[j][i])
                        dp2[i] = min(dp2[i], dp2[j-1]+1);
            }
        }
        return dp2[n-1];
    }
};

2.5 最长回文子序列

题目链接

516. 最长回文子序列 - 力扣(LeetCode)

题目描述

在这里插入图片描述

算法原理

在这里插入图片描述

编写代码

class Solution {
public:
    int longestPalindromeSubseq(string s) {
        int n = s.size();
        vector<vector<int>> dp(n, vector<int>(n));
        for(int i = n-1; i >= 0; --i)
        {
            dp[i][i] = 1; //处理i==j
            for(int j = i+1; j < n; ++j)
            {
                if(s[i] == s[j])
                    dp[i][j] = dp[i+1][j-1]+2; //统一处理i+1==j和i+1<j
                else
                    dp[i][j] = max(dp[i+1][j], dp[i][j-1]);
            }
        }
        return dp[0][n-1];
    }
};

2.6 变为回文串的最少插入次数

题目链接

1312. 让字符串成为回文串的最少插入次数 - 力扣(LeetCode)

题目描述

在这里插入图片描述

算法原理

在这里插入图片描述

细节问题:

  1. j从i+1开始循环,跳过i==j的情况,默认为0
  2. i+1==j 和 i+1<j 可以统一处理,因为dp表默认为0
  3. 无需初始化,因为边界情况前面已经特殊处理过了,不会越界
  4. 根据填表的需要:dp[i][j-1]和dp[i+1][j];填表顺序从下往上,从左往右,

编写代码

class Solution {
public:
    int minInsertions(string s) {
        int n = s.size();
        vector<vector<int>> dp(n, vector<int>(n));
        for(int i = n-1; i >= 0; --i)
        {
            for(int j = i+1; j < n; ++j)
            {
                if(s[i] == s[j])
                    dp[i][j] = dp[i+1][j-1];
                else
                    dp[i][j] = min(dp[i+1][j], dp[i][j-1])+1;
            }
        }
        return dp[0][n-1];
    }
};
动态规划分割回文串是一种常用的解决方案。在动态规划中,我们可以使用不同的状态定义和状态转移方程来解决这个问题。 一种常见的状态定义是使用一维数组dp[i],其中dp[i]表示字符串s的前i个字符形成回文子串的最少分割次数。这种定义可以通过判断s[j:i]是否为回文来进行状态转移,其中1 <= j <= i。具体的状态转移方程可以如下表示: - 当s[0:i]本身就是一个回文串时,不需要进行分割,即dp[i] = 0。 - 否则,我们可以遍历所有可能的分割点j,如果s[j+1:i]是回文串,那么我们可以将问题分割为两部分,即dp[i] = min(dp[i], dp[j] + 1)。 另一种状态定义是使用二维数组dp[i][j],其中dp[i][j]表示字符串s的前i个字符分割为j个子串的修改的最小字符数。在这种定义下,我们可以使用类似的状态转移方程来进行计算。具体的状态转移方程可以如下表示: - 当i < j时,不可能将前i个字符分割为j个子串,即dp[i][j] = INF。 - 当i >= j时,我们可以遍历所有可能的分割点k,计算dp[i][j]的最小值,即dp[i][j] = min(dp[i][j], dp[k][j-1] + cost(k+1, i)),其中cost(k+1, i)表示将子串s[k+1:i]修改为回文所需的最小字符数。 这两种定义和状态转移方程都可以用来解决动态规划分割回文串问题,具体使用哪种方法取决于具体的问题要求和效率要求。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* [动态规划解决回文串问题](https://blog.csdn.net/qq_37414405/article/details/111317301)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *3* [动态规划解分割回文串](https://blog.csdn.net/melody157398/article/details/119769501)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

52Hertz_Echo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值