算法设计_02

题目:

设顺序栈S中有2n个元素,从栈顶到栈底的元素依次为a2n,a2n-1,…,a2,a1,要求通过一个循环队列重新排列栈中元素,使得从栈顶到栈底的元素依次为a2n,a2n-2,…,a2,a2n-1,a2n-3,…,a1,请设计算法实现该操作,要求空间复杂度和时间复杂度均为O(n).
PS:作业记录

using namespace std;
#include<iostream>
#include<string>
#define Stack_Size 100
#define Queue_Size  100
#define STACK_INCREMENT 10
typedef struct Stack  		//栈的结构体定义
{ 
 	int *S_data;     	//数据域 
 	int top;      		//顺序栈栈顶 
 	int stacksize;     	//顺序栈当前长度
}Stack;
typedef struct Queue    	//循环队列结构体定义
{ 
 	int  *Q_data; 
 	int front;     		//队头指针
 	int rear;     		//队尾指针
}Queue;

//顺序栈函数定义
Stack Creat_Stack(int a)
{ 
 	int length = a;
 	int data = 0; 
 	Stack ST; 
	 ST.S_data = new int[Stack_Size];		//动态申请 
 	if (!ST.S_data)
  	cout << ("内存申请失败!") << endl;
 	ST.top = -1; 
 	ST.stacksize = Stack_Size; 
 	cout << "请输入顺序栈元素内容:" << endl; 
 	for (int i = 0; i < length; i++) 
 	{  
 		 cin >> data;
 		 ST.S_data[i] = data;  
 		 ST.top++; 
	 } 
 	cout << "顺序栈创建成功!" << endl; 
 	return ST;
}
//销毁栈
void Destroy_Stack(Stack &l)
{ 
 	delete[] l.S_data; 
 	l.top = -1; 
 	l.stacksize = 0; 
 	cout << "该顺序栈销毁成功!" << endl;
}

//增加空间
void Increment_Stack(Stack &ST)
{ 
 	int *newstack = new int[ST.stacksize + STACK_INCREMENT]; 
 	if (!newstack)
  	cout << ("存储分配失败!") << endl;
 	for (int i = 0; i < ST.top; i++) 
 	{  
  	newstack[i] = ST.S_data[i];
	 } 
 	ST.S_data = newstack;
 	delete[] ST.S_data;
 	ST.stacksize += STACK_INCREMENT;
}
//入栈
void Push_Stack(Stack &ST, int e)
{ 
 	if (ST.top == (ST.stacksize - 1)) 
 	 Increment_Stack(ST); 
 	ST.S_data[++ST.top] = e;
}
//出栈
int  Pop_Stack(Stack &ST, int e)
{ 
 	if (ST.top == -1)
  	cout << ("该顺序栈为空栈!") << endl;
 	return e = ST.S_data[ST.top--]; 
}
//打印栈,仅用于观看结果
void Print_Stack(Stack &ST)
{ 
 	cout << "该顺序栈的元素是:" << endl; 
 	for (int i = ST.top; i > -1; i--) 
	 {  
  		cout << ST.S_data[i] << " ";
	 } 
	 cout << endl;
}
//循环队列函数定义
void Creat_Queue(Queue &queue)
{ 
 	queue.Q_data = new int[Stack_Size]; 
	 if (!queue.Q_data)
  	cout << ("存储分配失败!") << endl;
 	queue.front = queue.rear = 0;
}
//销毁队列
void Destroy_Sqqueue(Queue &queue)
{ 
	 delete[] queue.Q_data; 
 	queue.front = queue.rear = 0; 
	 cout << "该循环队列销毁成功!";
}
//入队
void En_Queue(Queue &queue, int e)
{ 
 	if (((queue.rear + 1) % Queue_Size) == queue.front)
  	cout << ("该循环队列已满!") << endl;
 	queue.Q_data[queue.rear] = e; 
 	queue.rear = (queue.rear + 1) % Queue_Size;
}
//出队
int  De_Queue(Queue &queue, int e)
{ 
 	if (queue.front == queue.rear)  
  	cout << ("该循环队列为空队列!") ; 
	 e = queue.Q_data[queue.front]; 
	 queue.front = (queue.front + 1) % Queue_Size; 
 	return e;
}
//打印队列,仅用于观看结果
void Print_Queue(Queue &queue)
{ 
 	cout << "该循环队列的元素是:";
	 while (queue.front != queue.rear) 
 	{  
  	cout << queue.Q_data[queue.front] << " "; 
  	queue.front = (queue.front + 1) % Queue_Size;
	 } 
 	cout << endl;
}
//测试
void test01() 
{ 
 	Stack s; Queue q; 		//创建栈和队列
 	int e = 0, n = 0, temp = 0; 
 	Creat_Queue(q); 
 	cout << "请输入顺序栈长度(栈的长度为偶数):" ;
 	cin >> n;
 	s = Creat_Stack(n);      //初始化顺序栈
 	cout << "\n原始顺序栈: " << endl;
 	Print_Stack(s);
 	for (int i = 0; i < n; i++) 
 	{  
 		 temp = Pop_Stack(s, e); 
  		 En_Queue(q, temp);     //将出栈后的元素依次入队 
 	}
 	for (int i = 0; i < n; i++) 
	 {  
  	temp=De_Queue(q, e);  
  	if (i % 2 == 0)      //判断是否为偶数结点   
   		Push_Stack(s, temp);   //若是偶数结点,元素入栈
  	else   
   		En_Queue(q, temp);    //若是奇数结点,元素再次入队 
 	} 
 	for (int i = 0; i < n / 2; i++)
  		Push_Stack(s, De_Queue(q, e));  //循环队列中的奇数结点,依次入栈,此时所有元素皆在顺序栈中
 	for (int i = 0; i < n; i++)
  		En_Queue(q, Pop_Stack(s, e));  //将顺序栈中的元素依次出栈并入队,此时所有元素皆在循环队列中  
 	for (int i = 0; i < n; i++)
  		Push_Stack(s, De_Queue(q, e));  //将循环队列中的元素依次再次入队,此时顺序栈中的元素排列为题目要求
 	cout << "\n更改后的:" << endl;
 	Print_Stack(s);       //打印 
}
int main()
{ 
 	test01(); 
 	return 0;
}  

运行结果:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值