find the mincost route
Time Limit: 1000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 4313 Accepted Submission(s): 1732
接下来的M行里,每行包括3个整数a,b,c.代表a和b之间有一条通路,并且需要花费c元(c <= 100)。
3 3 1 2 1 2 3 1 1 3 1 3 3 1 2 1 1 2 3 2 3 1
3 It's impossible.
8600 | We have carefully selected several similar problems for you: 1595 1598 1596 1142 1217
题目大意:中文题目不解释了。
知识点补充(看了大神的解释才懂了,自己肯定想不出来):来自:http://blog.163.com/acm_candice/blog/static/168796081201010174751374/
//Floyd 的 改进写法可以解决最小环问题,时间复杂度依然是 O(n^3),储存结构也是邻接矩阵
int mincircle = infinity;
Dist = Graph;
for(int k=0;k<nVertex;++k){
//新增部分:
for(int i=0;i<k;++i)
for(int j=0;j<i;++j)
mincircle = min(mincircle,Dist[i][j]+Graph[j][k]+Graph[k][i]);
//通常的 floyd 部分:
for(int i=0;i<nVertex;++i)
for(int j=0;j<i;++j){
int temp = Dist[i][k] + Disk[k][j];
if(temp < Dist[i][j])
Dist[i][j] = Dist[j][i] = temp;
}
}
以上为网上流传的Floyd求最小环的主代码。我们发现,最下面两重循环就是Floyd原来的代码,新增的就是上面那个判环部分。一开始,我不明白,为什么要把新增的放在前面,两者的顺序能不能调换?现在的理解是这样的:在第k层循环,我们要找的是最大结点为k的环,而此时Dist数组存放的是k-1层循环结束时的经过k-1结点的最短路径,也就是说以上求出的最短路是不经过k点的,这就刚好符合我们的要求。为什么呢?假设环中结点i,j是与k直接相连,如果先求出经过k的最短路,那么会有这样一种情况,即:i到j的最短路经过k。这样的话就形成不了环,显然是错误的。当时还有一个问题,就是为什么要多开一个Dist数组呢,一个Graph不是足够了吗?其实好好想想,出现的问题和前面是一个道理。如果只开Graph,那么它里面的值就会不断改变,也会存在路径覆盖的情况,导致形成不了环或不是最小环。举个例子:假设现在进行第k层循环,i,j为枚举出来与k直接相连的边。由于此时Graph是动态的,原来根本不存在i到k的一条边,现在可能经过其它结点形成了“边”,但它未必是与k直接相连的边。以上两个问题花了我半天时间来弄懂,由于网上也没有找到关于这些问题的(可能我比较笨吧),所以要写这些东西,但又写得挺乱……
总结一下:每次枚举一个k值作为最大元素点,找到跟k直接相连的i点和j点(i、j、k不能相等),**!!再找一条i、j之间的不经过k点的最短路!!**,更新答案。
代码如下:
#include <cstdio>
#include <algorithm>
#define INF 0x3f3f3f//这里INF不能设置太大,否则到51行会爆int
using namespace std;
int map[110][110];//用于存原始数据
int dis[110][110];//用于更新i、j的最短距离
int n,m;
void init()
{
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
if(i==j)
{
map[i][j]=0;
dis[i][j]=0;
}
else
{
map[i][j]=INF;
dis[i][j]=INF;
}
}
}
}
int main()
{
while(scanf("%d%d",&n,&m)!=EOF)
{
init();//初始化
for(int i=0;i<m;i++)
{
int x,y,p;
scanf("%d%d%d",&x,&y,&p);
if(map[x][y]>p)//防止重边多重输入
{
map[x][y]=p;
map[y][x]=p;
dis[x][y]=p;
dis[y][x]=p;
}
}
int ans=INF;
for(int k=1;k<=n;k++)//枚举最大元素
{
for(int i=1;i<k;i++)//保证i与k不相等
{
for(int j=i+1;j<k;j++)//保证j和i也不相等,即i、j、k不相等
{
ans=min(ans,map[k][i]+map[k][j]+dis[i][j]);//dis[i][j]为不通过k点的i、j最短距离
}
}
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
dis[i][j]=min(dis[i][j],dis[i][k]+dis[k][j]);//更新dis
}
}
}
if(ans==INF)
{
printf("It's impossible.\n");
}
else
{
printf("%d\n",ans);
}
}
return 0;
}