课程背景
随着大数据技术的发展,数据挖掘方面的人才变得日益抢手。而《哈佛商业评论》日前更是宣布,“数据科学家”是二十一世纪最性感的职业。所谓性感,既代表着难以名状的诱惑,又说明了大家都不知道它干的是什么。那么这样的人才该具备怎样的才能呢?数据科学需要统计和计算机科学技能,常用的数据分析方法是数据科学或大数据技术的基础,已成为职场工作中的一项必备技能。
本学期北京交通大学新开了一门面向全校研究生的《数据分析方法及应用实战》课程,课程号:C404006B。课程考核方式为考查,平时作业和期末结课大作业。欢迎大家选课交流,也欢迎大家推荐给身边的同学选课。授课老师为杨小宝教授,有10多年为本科生和研究生讲授数据分析相关课程的丰富经验,长期从事交通数据建模与分析的研究,多篇相关成果发表在《TransportationResearch Part A/F》、《Accident Analysis and Prevention》等交通运输领域顶级刊物。杨老师希望同学们通过这门课程的学习,熟练掌握常用的数据分析方法及其实战技术,把数据分析能力发展为以后学习和工作中的一项核心竞争力。
课程主要内容和目标
本课程以统计学和数据统计为基础,讲授常用的数据分析方法,主要内容包括数据的描述统计、假设检验、列联表分析、方差分析、回归分析、聚类分析、因子分析、时间序列分析、信度效度分析、生存分析模型、离散因变量模型、计数模型等理论方法及其SPSS/STATA/SAS/R/软件的实现应用。
本课程的目标是使学生掌握数据分析的基本概念和基本思想方法,具备使用常用的数据分析方法并结合利用先修课程中的数学、概率论知识来解决一些实际问题的能力。其任务是向学生全面、系统、深入讲解各种数据分析方法的基本思想、理论知识和软件应用技术等内容,并引导学生运用所学方法去解决实际专业问题。
课程培养学生何种能力或技能
(1)深入讲解常用数据分析方法的基本思想、理论知识等内容,培养学生具备原始数据收集、基础数据分析模型、数据信息解释的综合能力。
(2)详细讲解数据分析软件SPSS/STATA的应用技术,并注重案例教学,培养学生运用所学方法和技能去解决实际专业问题的能力。
(3)运用基础数据分析方法开展科研实践,提升论文量化研究能力。
课程拟解决何种问题
(1)系统讲解多种数据分析进阶方法的基本思想和理论知识,解决理论方法的深层次学习与提升问题。
(2)结合案例,详细讲解数据分析软件R/SAS/STATA的应用技术,解决理论方法与工程实际应用脱节的问题。
(3)剖析课程内容相关的高质量期刊论文,解决理论方法与科研实践脱节的问题。