论文征集 | Transportmetrica A: Transport Science特刊征稿

592c5e956b28d3d1fb4ad8238a9aa649.png

JCR Q2期刊Transportmetrica A: Transport Science特刊

AI-driven prediction and optimization for smart rail transit systems

上线邀稿

特刊主题

The rapid expansion of rail transit systems, including subways, light rail, regional rail, inter-city railways, and high-speed railways, has introduced numerous challenges, such as congestion and operational complexities. Emerging technologies like artificial intelligence (AI) and large-scale data mining have facilitated the network planning, demand prediction, operation optimization, and maintenance of smart rail transit systems, thus meeting the increasing travel demand and ensuring efficient travel experiences for travelers. To bring together these points, this special issue seeks to collect the latest academic advancements and practical applications in rail transit systems. We aim to explore innovative AI-driven technologies for intelligent planning, predictive analytics, operational efficiency, and proactive maintenance in modern rail networks.

We welcome original research articles and reviews on key topics, including but not limited to:

  • Network planning: Data-driven and AI-enhanced strategies for line planning, long-term passenger flow forecasting before operation, etc.

  • Smart prediction: Deep learning or large language model-based approaches for normal and abnormal passenger flow prediction, inter-city demand prediction, etc.

  • Operation optimization: AI-driven optimization of train timetables, rolling stock circulation plans, and passenger flow management strategies to enhance operational efficiency.

  • Efficient maintenance: AI-powered failure prediction, remaining useful life estimation, and automated inspection using drones and robots, as well as anomaly detection for issues such as cracks, smoke, and fire in transit systems.

  • Interaction with multi-modal Transportation: Investigation of rail transit interactions with other transportation modes, including mobility-as-a-service (MaaS) frameworks and collaborative passenger flow prediction.

  • Intelligent Optimization Solutions: Dynamic and real-time optimization approaches, such as “predict-then-optimize” strategies, to enhance decision-making in rail transit systems.

客座编辑

Jinlei Zhang, Beijing Jiaotong University

zhangjinlei@bjtu.edu.cn

Wei Ma, Hong Kong Polytechnic University

wei.w.ma@polyu.edu.hk

Xinjie (Daniel) Xing, University of Liverpool

X.Xing3@liverpool.ac.uk

Lixing Yang, Beijing Jiaotong University

lxyang@bjtu.edu.cn

Lijun Sun, McGill University

lijun.sun@mcgill.ca

稿件提交

文章类型

VSI: AI-driven Prediction and Optimization for Smart Rail Transit Systems

时间安排

  • Deadline for first submission: 30 September, 2025

  • Deadline for first review: 31 December, 2025

  • Deadline for second revised submission: 28 February, 2026

  • Deadline for second review/approval of manuscript: 31 May, 2026

  • Final manuscript: 31 July, 2026

投稿链接

https://think.taylorandfrancis.com/special_issues/ai-driven-prediction-and-optimization-for-smart-rail-transit-systems/

点击阅读原文,了解更多投稿信息~

   END  

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

当交通遇上机器学习

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值