《白话深度学习与TensorFlow》之深度学习为什么这么强

版权声明:本文为博主原创文章,遵循 CC 4.0 by-sa 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/zuliang001/article/details/83274123

《白话深度学习与TensorFlow》

之深度学习为什么这么强

 

1. 不用再提取特征

由于巨量的线性分类器的堆叠(并行和串行)以及卷积网络的使用,它对噪声的忍耐能力、对多通道数据上投射出来的不同特征偏向的敏感程度会自动重视或者忽略。

2. 处理线性不可分

神经网络用大量的线性分类器的堆叠使得整个模型可以将线性不可分的问题变得可分。

SVM 也有一定的能力来处理线性不可分的问题,但它利用的是维度的引人(或者说升维)来解决的。而神经网络的每一个神经元都是一个线性分类器,所以神经网络能且只能通过线性分类器的组合来实现线性不可分的问题。

 

例如,在这个二维空间中有这样一个不规则的四边形,如果我们想用一条线(一个线性分类器)把它分开,并保证其一侧是这个四边形内所有的点,我们称为“类别1”,另一侧是其他的点,我们称为“类别0”,这简直是不可能的,因为不管怎么画,这一条线都会使得其中至少有一个类非常“不纯” 。 没关系,我们大不了画 4 条线了,

用这 4 条线把它围起来,也就是必须同时满足 4 个分类器的 1 分类标准才算是我们要约束的 1 分类一一每条直线的表达式都是形如 f(x)=wx+b 的线性分类器 。其实这也就是神经网络比以前各种分类器厉害的地方了,以前任何一种分类器可都没有这种能耐 。 这里画出来的这个不规则四边形不一定是一张图片中的信息,它只是用来表示一些向量在空间中的聚集区域 。

神经网络的神经元可以有很多层,每层可以有很多个神经元,整个网络的规模可以有几千甚至几万个神经元,那么在这种情况下,我们几乎可以描绘出任意的线性不可分的模型了 。 当然,我们这里只是用一个简单的二维向量来进行示意,真正的使用场景中,这些向量通常有几十万个维度或者更多,神经网络的层数也会非常深一一这就是我们平时所说的深度学习了 。 随着维度的加大,深度的加深,所能描述的分类器的复杂程度也会随之增加,所以传统分类模型中无法通过简单的线性分类器和非线性分类器处理的复杂学习场景(例如图形、视频、音频等)就能够通过海量分类器的叠加来实现。

展开阅读全文

没有更多推荐了,返回首页