7D-AI系列:模型微调之llama-factory

大模型的出现,导致信息量太大,只有静心动手操作,才能得到真理。

llama-factory简介

Llama Factory 是一个专注于大型语言模型(LLMs)微调的开源工具库,旨在简化对 LLaMA(Meta 开源模型)、BLOOM、ChatGLM 等大模型的定制化训练流程。它提供了用户友好的接口和丰富的功能,帮助开发者、研究者快速实现模型在特定任务或数据集上的适配。

llama-factory主要功能

1. 多种训练方式支持

  • LoRA 微调
  • QLoRA 微调(量化版LoRA)
  • 全参数微调
  • DPO/ORPO/SimPO 训练(偏好对齐)
  • PPO 训练(强化学习)
  • KTO 训练
  • 预训练

2. 多模态支持

  • 支持 LLaVA、Qwen-VL 等多模态模型
  • 可以处理图像和视频输入

3. 模型量化

支持多种量化方法:GPTQ、AWQ、AQLM
支持 4-bit、8-bit 等不同精度

4. 分布式训练

  • 支持多机训练
  • 支持 DeepSpeed ZeRO-3
  • 支持 Ray 分布式
  • 支持 FSDP

5. 优化技术

  • GaLore 优化
  • APOLLO 优化
  • BAdam 优化器
  • Adam-mini 优化器
  • LoRA+
  • PiSSA 优化

源码模块

在这里插入图片描述

安装步骤

# 配置虚拟环境
conda create -n llama_factory python=3.12 -y
conda activate llama_factory
# 克隆 LLaMA-Factory 仓库(使用 --depth 1 可以只克隆最新版本,加快下载速度)
git clone --depth 1 https://github.com/hiyouga/LLaMA-Factory.git
# 进入项目目录
cd LLaMA-Factory
# 安装依赖包,包括 PyTorch 和评估指标相关的依赖
pip install -e ".[torch,metrics]"
# 启动 Web UI 界面
llamafactory-cli webui

启动界面

在这里插入图片描述

配置模型、训练参数和数据集

注意:个人练习不要选择太大的模型权重,不然会非常慢,并且也没有效果。
在这里插入图片描述
数据集要配置在dataset_info.json中才能在列表中选择,如下所示:
在这里插入图片描述

训练过程

在这里插入图片描述

验证训练结果

训练前:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
训练后:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
其实微调并不难,难的是数据集和效果评估。

你想看哪些和AI大模型相关的技术点,可以留言,我们一一拆解。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zuozewei

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值