1、69 sqrt(x)
思路一:直接从1到x/2之间遍历,判断是否是平方根的条件是,i*i小于等于x并且(i+1)*(i+1)大于x,则返回i。超时。
思路二:(条件是单调)二分查找法:初始化i=0,j=x,mid=0。进入循环,找到中间值mid=(i+j)/2,如果mid>x/mid,表示mid不是平方根,且数值过大,则j=mid。如果mid小于等于x/mid,则判断(mid+1)>x/(mid+1),表示mid*mid小于x,且mid+1后的平方会比x大,则表示mid就是那个平方根,返回mid.否则表示mid过小,i=mid.
#我写的二分法思想的代码
class Solution:
def mySqrt(self, x: int) -> int:
if x==0:
return 0
if x==1:
return 1
i=0
j=x
while i<=j:
mid=i+(j-i)//2
if x/mid <mid:
j=mid-1
elif x/mid >mid:
if (mid+1)*(mid+1)>x:
return mid
else:
i=mid+1
else:
return mid
#网上的例程
class Solution:
def mySqrt(self, x: int) -> int:
if x==0 or x==1:
return x
i=0
j=x
mid=0
while True:
mid=(i+j)//2
if mid>x/mid:
j=mid
else:
if (mid+1)>x/(mid+1):
return int(mid)
i=mid
思路三、牛顿迭代公式
链接:https://www.zhihu.com/question/20690553
#letcode这个题目有点问题这个思路是对的
class Solution1(object):
def mySqrt(self, x):
"""
:type x: int
:rtype: int
"""
r=x
while r*r>x:
r=(r+x/r)/2
return r