【论文笔记】DTCDSCN:基于双任务约束的孪生卷积神经网络的变化检测模型

本文是论文《Building Change Detection for Remote Sensing Images Using a Dual Task Constrained Deep Siamese Convolutional Network Model》的阅读笔记。

文章解决的是建筑物变化检测问题。在该问题中,由于提取的特征不足够具有辨别性,因此导致识别出的区域不完整或者区域边界不规则。为了解决该问题,文章提出了一个双任务约束的孪生卷积神经网络(dual task constrained deep Siamese convolutional network, DTCDSCN)。它由三个子网络构成:一个变化检测网络和两个语义分割网络(SSN)。此外还引入了双注意力模块(dual attention module, DAM),以及改善了focus loss来抑制样本不均衡的问题。

一、相关工作

建筑物变化检测算法主要可分为两类,一类是分类后比较法,另一类是直接分类法。分类后比较法首先提取两张图像中的建筑物,然后通过比较提取到的建筑物图获取变化检测的分类结果,这要求建筑物提取时精度比较高。直接分类法首先生成一个相似特征图,然后分析该特征图得到变化图。

文献3提出了一个基于形态学建筑物指数的方法,该方法结合了形态学指数、空间特征和形状,并根据设定的阈值抽取建筑物变化的区域。文献4提出了基于深度学习的方法,该方法使用了孪生神经网络来提取相似特征图,然后使用KNN将其聚类来获取变化的区域。文献6提出了SegNet,该方法的缺点是1. 对建筑物小的空间和结构的变化不敏感;2. 提取的变化区域往往带有洞,或者边界是不规则的。

上图中a, b, c, d, e列分别是2016年的图像、2012年的图像、SegNet的结果、DTCDSCN的结果、ground truth。

文章主要针对以上第2条缺点做了改进。可以发现上图中c列所示,由于SegNet能学到像素级的特征,因此效果是比较好的,但是预测的变化区域往往不够完整。而文章所提出的物体级的网络可以得到更准确的结果。文章的贡献有三:

  • 提出了一个新颖的建筑物变化检测的模型,可以同时进行建筑物变化检测任务(像素级)和建筑物提取任务(物体级),即语义分割任务。这两个任务共享相同的特征提取层;
  • 引入了双注意力模块,能更好的利用通道和空间信息;
  • 改善focus loss(FL),提出了变化检测损失(CDL),以解决样本不均衡的问题(变化的样本数量要少于未变化的样本数量,这就叫导致了样本集的极不均衡。)。

二、网络结构和方法

整个网络包括一个变化检测网络和两个语义分割网络SSN,整个网络的输出是一个变化检测图和一个分割结果图。

变化检测网络是基于孪生神经网络的,其网络结构具有两个共享权重的编码器,以及一个解码器。采用SE-ResNet作为基础的编码器模块。为了利用全局上下文信息,引入了空间特征金字塔池化模块作为中心块,这样可以增大特征图的感受野,并嵌入不同尺度的上下文特征。解码器使用D-LinkNet,其中每个变化检测块(CD block)都有3个输入。考虑到来自不同空间位置和不同通道的特征可能会相关,以及收到注意力机制的启发,在解码器部分加入了DAM注意力模块,因此可以提高特征提取的辨别能力。DAM的结构如下图中e所示。

上图中a,b,c,d,e分别表示网络结构、中心块的组成情况、最终块的组成情况、解码器块的组成情况、双注意力模块的组成情况。

而语义分割网络SSN的结构和变化检测网络是相似的。在语义分割任务中,有2个共享权重的SSN。

在变化检测网络中使用CDL损失函数,对于SSN网络使用交叉熵损失函数。
ℓ s s = Binary ⁡  CrossEntropy  ( y ^ ; y ) ℓ c d = CDL ⁡ ( δ ; θ ; y ^ ; y ) L = α ℓ s s + 2 β ℓ c d \begin{array}{l} \ell_{s s}=\operatorname{Binary} \text { CrossEntropy }(\hat{y} ; y) \\ \ell_{c d}=\operatorname{CDL}(\delta ; \theta ; \hat{y} ; y)\\ L=\alpha \ell_{s s}+2 \beta \ell_{c d} \end{array} ss=Binary CrossEntropy (y^;y)cd=CDL(δ;θ;y^;y)L=αss+2βcd
其中 y y y是ground truth, y ^ \hat{y} y^是预测结果, δ \delta δ是CDL中变化样本的权重, θ \theta θ是CDL中未变化样本的权重, α \alpha α β \beta β是两个权重系数。CDL的计算公式如下:
C D L ( δ ; θ ; y ^ ; y ) = { − ( 2 − y ^ ) δ log ⁡ ( y ^ ) , y = 1 − ( 1 + y ^ ) θ log ⁡ ( 1 − y ^ ) , y = 0 C D L(\delta ; \theta ; \hat{y} ; y)=\left\{\begin{array}{l} -(2-\hat{y})^{\delta} \log (\hat{y}) \quad, y=1 \\ -(1+\hat{y})^{\theta} \log (1-\hat{y}), y=0 \end{array}\right. CDL(δ;θ;y^;y)={(2y^)δlog(y^),y=1(1+y^)θlog(1y^),y=0
FL函数同时考虑了样本集的不平衡性和样本集的难度。这使得容易分类的负片占据了损失的大部分,并且主导了梯度,对于相同难度的样本,FL函数计算的变化样本和不变样本的权重将是线性的。然而,由于样本集的不平衡性和样本集的难度都会影响损失函数,因此变化样本和不变样本的权重之间不可能是线性关系。

三、实验

实验使用的是WHU建筑物数据集,它既包含语义标签又包含变化标签,每张图大小是 32507 × 15354 32507\times15354 32507×15354的,需要将其裁剪成不重叠的 256 × 256 256\times256 256×256大小的图片,然后划分训练集、验证集和测试集分别6096、762和762张图片。

使用mini-batch的ADAM优化器,batch size设为16,学习率为 1 e − 3 1e^{-3} 1e3,评价指标选用IoU、F1值、准确率和召回率。并且采用随机旋转和反转的方式进行数据增强。在损失函数中,两个SSN的权重设为0.25,变化检测网络的权重设为0.5。

上表是消融实验的结果,验证每个部分对网络效果的影响,DA表示数据增强。DAM注意力、CDL损失和数据增强的使用都提升了效果。

上图中a~h分别是2016年图像、2012年图像、SCDN的结果、使用DAM的SCDN的结果、使用DAM和FL的SCDN的结果、使用DAM和CDL的SCDN的结果、使用DAM和CDL的SCDN的结果(原文中是这样写的,应该写错了)、ground truth。提出的模型能够解决提取的变化区域有空洞和边界不规则的问题。

上图是不同变化检测方法的结果对比表。

与语义分割模型的对比。

分类后处理模型的结果。

分别是2011语义分割标签、2016语义分割标签和两个分别标签的对比。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值