总时间限制: 1000ms
内存限制: 65536kB
描述
怪盗基德是一个充满传奇色彩的怪盗,专门以珠宝为目标的超级盗窃犯。而他最为突出的地方,就是他每次都能逃脱中村警部的重重围堵,而这也很大程度上是多亏了他随身携带的便于操作的滑翔翼。
有一天,怪盗基德像往常一样偷走了一颗珍贵的钻石,不料却被柯南小朋友识破了伪装,而他的滑翔翼的动力装置也被柯南踢出的足球破坏了。不得已,怪盗基德只能操作受损的滑翔翼逃脱。
假设城市中一共有N幢建筑排成一条线,每幢建筑的高度各不相同。初始时,怪盗基德可以在任何一幢建筑的顶端。他可以选择一个方向逃跑,但是不能中途改变方向(因为中森警部会在后面追击)。因为滑翔翼动力装置受损,他只能往下滑行(即:只能从较高的建筑滑翔到较低的建筑)。他希望尽可能多地经过不同建筑的顶部,这样可以减缓下降时的冲击力,减少受伤的可能性。请问,他最多可以经过多少幢不同建筑的顶部(包含初始时的建筑)?
输入
输入数据第一行是一个整数K(K < 100),代表有K组测试数据。
每组测试数据包含两行:第一行是一个整数N(N < 100),代表有N幢建筑。第二行包含N个不同的整数,每一个对应一幢建筑的高度h(0 < h < 10000),按照建筑的排列顺序给出。
输出
对于每一组测试数据,输出一行,包含一个整数,代表怪盗基德最多可以经过的建筑数量。
样例输入
3 8 300 207 155 299 298 170 158 65 8 65 158 170 298 299 155 207 300 10 2 1 3 4 5 6 7 8 9 10
样例输出
6 6 9
解题思路
基德可以在任意楼作为起点,然后向左或向后走一个降序序列。
既然从右向左看是一个下降序列,那么从左向右看,这就是一个上升序列。
所以本题其实就是求:最长上升子序列长度和最长下降子序列长度的最大值。
定义a[i]表示第i个数。
1、求最长下降子序列
定义dpu[i]表示以i为结尾的最长上升子序列的长度。
情况一:对所有满足j < i的j, 如果a[i]>a[j],则以第j元素为结尾的上升子序列加上第i元素,形成新的上升子序列。
上升子序列的长度dpu[i] = dpu[j]+1。
情况二:只有一个第i元素构成上升子序列。
即dpu[i] = 1。
dpu[i]为所有可能的状态值中的最大值。
dpu中的最大值,即为最长上升子序列的长度。
2. 求最长下降子序列
定义dpd[i]表示以i为结尾的最长下降子序列的长度。
情况一:对所有满足j < i的j, 如果a[i]<a[j],则以第j元素为结尾的下降子序列加上第i元素,形成新的下降子序列。
下降子序列的长度为dpd[i] = dpd[j]+1。
情况二:只有一个第i元素构成下降子序列。
即dpd[i] = 1。
dpd[i]为所有可能的状态值中的最大值。
dpu中的最大值为最长下降子序列的长度。
最后求最长上升子序列的长度与最长下降子序列的长度中的最大值。
注意有组数据。
代码:(将长上升子序列的长度与最长下降子序列一起求)
#include<bits/stdc++.h>
using namespace std;
#define N 105
int a[N], dpu[N], dpd[N];
int main()
{
int k, n, mx;
cin >> k;
while(k--)
{
mx = 0;
cin >> n;
for(int i = 1; i <= n; ++i)
cin >> a[i];
for(int i = 1; i <= n; ++i)
{
dpu[i] = dpd[i] = 1;
for(int j = 1; j < i; ++j)
{
if(a[i] > a[j])
dpu[i] = max(dpu[i], dpu[j]+1);
}
if(a[i] < a[j])
dpd[i] = max(dpd[i], dpd[j]+1);
}
mx = max(max(dpd[i], dpu[i]), mx);
}
cout << mx << endl;
}
return 0;
}