4977:怪盗基德的滑翔翼

文章描述了一个编程问题,涉及怪盗基德使用受损滑翔翼从高楼逃脱的情景。问题要求计算在只能从高楼层滑翔至低楼层的情况下,最多能经过多少不同的建筑。解题策略包括计算最长上升子序列和最长下降子序列的长度,然后取其最大值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

总时间限制: 1000ms

内存限制: 65536kB

描述

怪盗基德是一个充满传奇色彩的怪盗,专门以珠宝为目标的超级盗窃犯。而他最为突出的地方,就是他每次都能逃脱中村警部的重重围堵,而这也很大程度上是多亏了他随身携带的便于操作的滑翔翼。

有一天,怪盗基德像往常一样偷走了一颗珍贵的钻石,不料却被柯南小朋友识破了伪装,而他的滑翔翼的动力装置也被柯南踢出的足球破坏了。不得已,怪盗基德只能操作受损的滑翔翼逃脱。

假设城市中一共有N幢建筑排成一条线,每幢建筑的高度各不相同。初始时,怪盗基德可以在任何一幢建筑的顶端。他可以选择一个方向逃跑,但是不能中途改变方向(因为中森警部会在后面追击)。因为滑翔翼动力装置受损,他只能往下滑行(即:只能从较高的建筑滑翔到较低的建筑)。他希望尽可能多地经过不同建筑的顶部,这样可以减缓下降时的冲击力,减少受伤的可能性。请问,他最多可以经过多少幢不同建筑的顶部(包含初始时的建筑)?

输入

输入数据第一行是一个整数K(K < 100),代表有K组测试数据。
每组测试数据包含两行:第一行是一个整数N(N < 100),代表有N幢建筑。第二行包含N个不同的整数,每一个对应一幢建筑的高度h(0 < h < 10000),按照建筑的排列顺序给出。

输出

对于每一组测试数据,输出一行,包含一个整数,代表怪盗基德最多可以经过的建筑数量。

样例输入

3
8
300 207 155 299 298 170 158 65
8
65 158 170 298 299 155 207 300
10
2 1 3 4 5 6 7 8 9 10

样例输出

6
6
9

解题思路 

基德可以在任意楼作为起点,然后向左或向后走一个降序序列。
既然从右向左看是一个下降序列,那么从左向右看,这就是一个上升序列。
所以本题其实就是求:最长上升子序列长度和最长下降子序列长度的最大值。

定义a[i]表示第i个数。

1、求最长下降子序列


定义dpu[i]表示以i为结尾的最长上升子序列的长度。
 

情况一:对所有满足j < i的j, 如果a[i]>a[j],则以第j元素为结尾的上升子序列加上第i元素,形成新的上升子序列。

上升子序列的长度dpu[i] = dpu[j]+1。


情况二:只有一个第i元素构成上升子序列。

     即dpu[i] = 1。


dpu[i]为所有可能的状态值中的最大值。
dpu中的最大值,即为最长上升子序列的长度。

2. 求最长下降子序列


定义dpd[i]表示以i为结尾的最长下降子序列的长度。
 

情况一:对所有满足j < i的j, 如果a[i]<a[j],则以第j元素为结尾的下降子序列加上第i元素,形成新的下降子序列。

下降子序列的长度为dpd[i] = dpd[j]+1。
情况二:只有一个第i元素构成下降子序列。

    即dpd[i] = 1。
dpd[i]为所有可能的状态值中的最大值。
dpu中的最大值为最长下降子序列的长度。

最后求最长上升子序列的长度与最长下降子序列的长度中的最大值。
注意有组数据。

代码:(将长上升子序列的长度与最长下降子序列一起求)

#include<bits/stdc++.h>
using namespace std;
#define N 105
int a[N], dpu[N], dpd[N];
int main()
{
    int k, n, mx;
    cin >> k;
    while(k--)
    {
        mx = 0;
        cin >> n;
        for(int i = 1; i <= n; ++i)
            cin >> a[i];
        for(int i = 1; i <= n; ++i)
        {
            dpu[i] = dpd[i] = 1;
            for(int j = 1; j < i; ++j)
            { 
                if(a[i] > a[j]) 
                    dpu[i] = max(dpu[i], dpu[j]+1);
            }
                if(a[i] < a[j]) 
                    dpd[i] = max(dpd[i], dpd[j]+1);
            }
            mx = max(max(dpd[i], dpu[i]), mx); 
        }
        cout << mx << endl;
    }
    return 0;
}


 

### 关于信奥一本通在线评测系统中编号1286题目基德滑翔翼 #### 题目概述 该题属于动态规划中的路径优化类问题。背景设定为基德利用滑翔翼从一个高楼飞到另一个高楼,目标是在能量消耗最小的情况下完成飞行路线。 #### 动态规划模型构建 为了求解此问题,可以建立如下DP方程: 设`dp[i][j]`表示到达第i栋楼高度为j时所需的最少能量消耗,则状态转移方程可定义为: ```cpp for (int i = 1; i <= n; ++i) { for (int j = hmin; j <= hmax; ++j) { dp[i][j] = min(dp[i-1][k] + cost(i, k, j)) // 对所有可能的高度k进行枚举 } } ``` 其中`cost(i,k,j)`代表从上一栋楼高度k移动至当前楼层高度j所耗费的能量值[^1]。 #### 边界条件处理 初始化时需考虑起始位置的能量消耗设置以及不可达情况下的极大值赋初值操作,确保算法能够正常收敛得到最优解。 #### 时间复杂度分析 由于涉及到双重循环遍历每一对`(i,j)`组合,并且内部还需计算不同起点带来的额外开销,因此整体时间复杂度大约为O(n * m^2),这里n指代建筑物数量,m则对应最大允许变化范围内的高度差。 #### 测试案例建议 对于此类涉及具体数值运算的问题,在编写代码前应先准备好几组边界测试用例来验证逻辑正确性,比如当只有一座建筑、两座相邻高度相等/不等的情况等特殊情形下程序的行为是否符合预期。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值