4977:怪盗基德的滑翔翼

文章描述了一个编程问题,涉及怪盗基德使用受损滑翔翼从高楼逃脱的情景。问题要求计算在只能从高楼层滑翔至低楼层的情况下,最多能经过多少不同的建筑。解题策略包括计算最长上升子序列和最长下降子序列的长度,然后取其最大值。
摘要由CSDN通过智能技术生成

总时间限制: 1000ms

内存限制: 65536kB

描述

怪盗基德是一个充满传奇色彩的怪盗,专门以珠宝为目标的超级盗窃犯。而他最为突出的地方,就是他每次都能逃脱中村警部的重重围堵,而这也很大程度上是多亏了他随身携带的便于操作的滑翔翼。

有一天,怪盗基德像往常一样偷走了一颗珍贵的钻石,不料却被柯南小朋友识破了伪装,而他的滑翔翼的动力装置也被柯南踢出的足球破坏了。不得已,怪盗基德只能操作受损的滑翔翼逃脱。

假设城市中一共有N幢建筑排成一条线,每幢建筑的高度各不相同。初始时,怪盗基德可以在任何一幢建筑的顶端。他可以选择一个方向逃跑,但是不能中途改变方向(因为中森警部会在后面追击)。因为滑翔翼动力装置受损,他只能往下滑行(即:只能从较高的建筑滑翔到较低的建筑)。他希望尽可能多地经过不同建筑的顶部,这样可以减缓下降时的冲击力,减少受伤的可能性。请问,他最多可以经过多少幢不同建筑的顶部(包含初始时的建筑)?

输入

输入数据第一行是一个整数K(K < 100),代表有K组测试数据。
每组测试数据包含两行:第一行是一个整数N(N < 100),代表有N幢建筑。第二行包含N个不同的整数,每一个对应一幢建筑的高度h(0 < h < 10000),按照建筑的排列顺序给出。

输出

对于每一组测试数据,输出一行,包含一个整数,代表怪盗基德最多可以经过的建筑数量。

样例输入

3
8
300 207 155 299 298 170 158 65
8
65 158 170 298 299 155 207 300
10
2 1 3 4 5 6 7 8 9 10

样例输出

6
6
9

解题思路 

基德可以在任意楼作为起点,然后向左或向后走一个降序序列。
既然从右向左看是一个下降序列,那么从左向右看,这就是一个上升序列。
所以本题其实就是求:最长上升子序列长度和最长下降子序列长度的最大值。

定义a[i]表示第i个数。

1、求最长下降子序列


定义dpu[i]表示以i为结尾的最长上升子序列的长度。
 

情况一:对所有满足j < i的j, 如果a[i]>a[j],则以第j元素为结尾的上升子序列加上第i元素,形成新的上升子序列。

上升子序列的长度dpu[i] = dpu[j]+1。


情况二:只有一个第i元素构成上升子序列。

     即dpu[i] = 1。


dpu[i]为所有可能的状态值中的最大值。
dpu中的最大值,即为最长上升子序列的长度。

2. 求最长下降子序列


定义dpd[i]表示以i为结尾的最长下降子序列的长度。
 

情况一:对所有满足j < i的j, 如果a[i]<a[j],则以第j元素为结尾的下降子序列加上第i元素,形成新的下降子序列。

下降子序列的长度为dpd[i] = dpd[j]+1。
情况二:只有一个第i元素构成下降子序列。

    即dpd[i] = 1。
dpd[i]为所有可能的状态值中的最大值。
dpu中的最大值为最长下降子序列的长度。

最后求最长上升子序列的长度与最长下降子序列的长度中的最大值。
注意有组数据。

代码:(将长上升子序列的长度与最长下降子序列一起求)

#include<bits/stdc++.h>
using namespace std;
#define N 105
int a[N], dpu[N], dpd[N];
int main()
{
    int k, n, mx;
    cin >> k;
    while(k--)
    {
        mx = 0;
        cin >> n;
        for(int i = 1; i <= n; ++i)
            cin >> a[i];
        for(int i = 1; i <= n; ++i)
        {
            dpu[i] = dpd[i] = 1;
            for(int j = 1; j < i; ++j)
            { 
                if(a[i] > a[j]) 
                    dpu[i] = max(dpu[i], dpu[j]+1);
            }
                if(a[i] < a[j]) 
                    dpd[i] = max(dpd[i], dpd[j]+1);
            }
            mx = max(max(dpd[i], dpu[i]), mx); 
        }
        cout << mx << endl;
    }
    return 0;
}


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值