什么是气泡图?怎样用Python绘制?怎么用?终于有人讲明白了

本文介绍了气泡图的概念、用途,以及如何使用Python进行绘制。气泡图适用于展示三个变量间的关系,例如通过位置表示两个变量,用气泡大小表示第三个变量。通过代码示例展示了如何创建气泡图,并提及了气泡图在数据量较大时的阅读挑战及解决方案。此外,还分享了动态气泡图的实现,以呈现数据随时间变化的情况。
摘要由CSDN通过智能技术生成

导读:什么是气泡图?可以用来呈现哪些数据关系?在数据分析过程中可以解决哪些问题?怎样用Python绘制气泡图?本文逐一为你解答。

作者:屈希峰

来源:大数据DT(ID:bigdatadt)

01 概述

气泡图(Bubble)是一种多变量图表,是散点图的变体,也可以认为是散点图和百分比区域图的组合。其可用于展示三个变量之间的关系,和散点图一样,绘制时将一个变量放在横轴,另一个变量放在纵轴,而第三个变量则用气泡的大小来表示。

排列在工作表的列中的数据(第一列中列出x值,在相邻列中列出相应的y值和气泡大小的值)可以绘制在气泡图中。

气泡图与散点图相似,不同之处在于:气泡图允许在图表中额外加入一个表示大小的变量进行对比,而第四维度的数据则可以通过不同的颜色来表示(甚至在渐变中使用阴影来表示)。

另一种使用气泡元素的流行方法是使用气泡地图。在气泡地图中,x和y分别代表一个地理位置的经纬坐标。在不要求定位非常精确的情况下,气泡地图可以将数据的相对集中度完美地体现在地理背景中。

此外,表示时间维度的数据时,可以将时间维度作为直角坐标系中的一个维度,或者结合动画来表现数据随着时间的变化情况。

气泡图通常用于比较和展示不同类别圆点(这里我们称为气泡)之间的关系,通过气泡的位置以及面积大小。从整体上看,气泡图可用于分析数据之间的相关性。

但需要注意的是,气泡图的数据大小容量有限,气泡太多会使图表难以阅读。但是可以通过增加一些交互行为弥补:隐藏一些信息,当鼠标点击或者悬浮时显示,或者添加一个选项用于重组或者过滤分组类别。

最后,气泡的大小是映射面积而非半径或直径,如果是基于半径或者直径,圆的大小不仅会呈现指数级的变化,而且还会导致视觉上的误差。如图1所示。

▲图1 气泡图

02 实例

气泡图的代码如代码示例①所示。

代码示例①

1# 简单气泡图  
2x=[1,2,3,4]  
3y=[2,4,6,8]  
4sizes = np.array(y)*5 # 气泡大小,单位屏幕像素  
5p = figure(title="bubble chart")  
6p.scatter(x, y, marker="circle", size=sizes, color="navy",  
7#     fill_color=None, line_width=2  
8         )  
9show(p)

运行结果如图2所示。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值