redis的过期策略
redis的过期策略是定期删除+惰性删除
- 定期删除
redis每隔一段时间(默认是100ms)就随机抽取一些设置了过期时间的key,检查其是否过期,过期则删除。之所以是随机抽取而不是全部遍历所有设置过期时间的key,是因为当设置过期时间的key特别多的情况下,如果全部遍历的话将耗费大量的时间与性能,一首凉凉送给你…
如果只使用定期删除的话还会出现一个问题,由于是随机抽取设置过期时间的key,可能会导致很多key虽然到了时间,但是还没有被随机抽取到,结果还没有被删除掉。所以针对这个问题便有了惰性删除。
- 惰性删除
在获取key的时候,检查key是否已过期,如果已过期就删除,并不返回任何东西
使用定期删除+惰性删除的策略后实际上还存在一个问题,如果定期删除漏掉了很多过期的key,而且客户端也没有及时去查询这些key(导致惰性删除失效),这样的话就会有大量过期的key堆积在内存当中,时间一长,redis的内存将会逐渐耗尽。为了解决这个问题,便又有了内存淘汰机制…
redis内存淘汰机制
redis存在以下几种内存淘汰机制:
- noeviction:当内存不足以容纳新写入数据时,新写入操作会报错(不推荐)
- allkeys-lru:当内存不足以容纳新写入数据时,在键空间中,移除最近最少使用的 key(lru算法,最常用,推荐)
- allkeys-random:当内存不足以容纳新写入数据时,在键空间中,随机移除某个 key(不推荐,因为随机移除没必要啊,肯定都是想把最近最少使用的给删掉啊)
- volatile-lru:当内存不足以容纳新写入数据时,在设置了过期时间的键空间中,移除最近最少使用的 key(没有allkeys-lru合适)
- volatile-random:当内存不足以容纳新写入数据时,在设置了过期时间的键空间中,随机移除某个 key
- volatile-ttl:当内存不足以容纳新写入数据时,在设置了过期时间的键空间中,有更早过期时间的 key 优先移除
在以上几种内存淘汰机制中,推荐使用 allkeys-lru 这种,只需在redis的配置文件中做如下配置:
maxmemory-policy allkeys-lru
该种机制使用了LRU算法,在已有的JDK数据结构中可以基于LinkedHashMap实现一个很简单的LRU。
public class LRUCache<K, V> extends LinkedHashMap<K, V> {
private final int CACHE_SIZE;
/**
* 传递进来最多能缓存多少数据
*
* @param cacheSize 缓存大小
*/
public LRUCache(int cacheSize) {
// true 表示让 linkedHashMap 按照访问顺序来进行排序,最近访问的放在尾部,最老访问的放在头部。
super((int) Math.ceil(cacheSize / 0.75) + 1, 0.75f, true);
CACHE_SIZE = cacheSize;
}
@Override
protected boolean removeEldestEntry(Map.Entry<K, V> eldest) {
// 当 map中的数据量大于指定的缓存个数的时候,就自动删除头部的数据(最老访问的数据)。
return size() > CACHE_SIZE;
}
}