LightOJ 1078 - Integer Divisibility (同余定理)

1078 - Integer Divisibility

Time Limit: 2 second(s)

Memory Limit: 32 MB

If an integer is not divisible by 2 or 5, some multiple of that number in decimal notation is a sequence of only a digit. Now you are given the number and the only allowable digit, you should report the number of digits of such multiple.

For example you have to find a multiple of 3 which contains only 1's. Then the result is 3 because is 111 (3-digit) divisible by 3. Similarly if you are finding some multiple of 7 which contains only 3's then, the result is 6, because 333333 is divisible by 7.

Input

Input starts with an integer T (≤ 300), denoting the number of test cases.

Each case will contain two integers n (0 < n ≤ 106 andn will not be divisible by 2 or 5) and the allowable digit(1 ≤ digit ≤ 9).

Output

For each case, print the case number and the number of digits of such multiple. If several solutions are there; report the minimum one.

Sample Input

Output for Sample Input

3

3 1

7 3

9901 1

Case 1: 3

Case 2: 6

Case 3: 12

 

题意:给出两个数n和digit,求要几个(cnt)digit能把n整除。  例如给出3和1,   111能整除3, 所以cnt为3。


题解:很明显的同余定理,(a+b)%n=(a%n+b%n)%n。


代码如下:

#include<cstdio>
#include<cstring>
int main()
{
	int n,digit,ans,cnt;
	int k=1,t;
	scanf("%d",&t);
	while(t--)
	{
		scanf("%d%d",&n,&digit);
		ans=digit%n;//赋值前要先取余,要不然会WA 
		cnt=1;
		while(ans)
		{
			ans=(ans*10+digit)%n;
			cnt++;
		}
		printf("Case %d: %d\n",k++,cnt);
	}
	return 0;
} 





评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值