1078 - Integer Divisibility
Time Limit: 2 second(s) | Memory Limit: 32 MB |
If an integer is not divisible by 2 or 5, some multiple of that number in decimal notation is a sequence of only a digit. Now you are given the number and the only allowable digit, you should report the number of digits of such multiple.
For example you have to find a multiple of 3 which contains only 1's. Then the result is 3 because is 111 (3-digit) divisible by 3. Similarly if you are finding some multiple of 7 which contains only 3's then, the result is 6, because 333333 is divisible by 7.
Input
Input starts with an integer T (≤ 300), denoting the number of test cases.
Each case will contain two integers n (0 < n ≤ 106 andn will not be divisible by 2 or 5) and the allowable digit(1 ≤ digit ≤ 9).
Output
For each case, print the case number and the number of digits of such multiple. If several solutions are there; report the minimum one.
Sample Input | Output for Sample Input |
3 3 1 7 3 9901 1 | Case 1: 3 Case 2: 6 Case 3: 12 |
题意:给出两个数n和digit,求要几个(cnt)digit能把n整除。 例如给出3和1, 111能整除3, 所以cnt为3。
题解:很明显的同余定理,(a+b)%n=(a%n+b%n)%n。
代码如下:
#include<cstdio>
#include<cstring>
int main()
{
int n,digit,ans,cnt;
int k=1,t;
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&n,&digit);
ans=digit%n;//赋值前要先取余,要不然会WA
cnt=1;
while(ans)
{
ans=(ans*10+digit)%n;
cnt++;
}
printf("Case %d: %d\n",k++,cnt);
}
return 0;
}