If an integer is not divisible by 2 or 5, some multiple of that number in decimal notation is a sequence of only a digit. Now you are given the number and the only allowable digit, you should report the number of digits of such multiple.
For example you have to find a multiple of 3 which contains only 1's. Then the result is 3 because is 111 (3-digit) divisible by 3. Similarly if you are finding some multiple of 7 which contains only 3's then, the result is 6, because 333333 is divisible by 7.
Input starts with an integer T (≤ 300), denoting the number of test cases.
Each case will contain two integers n (0 < n ≤ 106 and n will not be divisible by 2 or 5) and the allowable digit (1 ≤ digit ≤ 9).
For each case, print the case number and the number of digits of such multiple. If several solutions are there; report the minimum one.
3
3 1
7 3
9901 1
Case 1: 3
Case 2: 6
Case 3: 12
题意:输入两个数n,m,要求找一个数只包含m能够被n整除,如果有多个,输出最小的那个的位数;思路:模拟依次递增数位检验就好了;
下面附上代码:
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
int main()
{
ll n,m;
int t,k=0;
cin>>t;
while(t--)
{
cin>>n>>m;
if(m%n==0) printf("Case %d: 1\n",++k);
else
{
ll sum=m,i=1;
while(sum%n)
{
sum%=n;
sum=sum*10+m;
i++;
}
printf("Case %d: %d\n",++k,i);
}
}
return 0;
}