Datawhale AI 夏令营 降水预测模型

首先需要说明这是一次失败的尝试。最初在云平台上运行代码,结果在解压数据时由于空间不足,导致无法解压。之后将数据集都下载到本地,又因为环境、版本冲突导致库的安装一直存在问题,尝试许久无法解决。因此仅在云平台,采用部分数据,进行了模型的训练。

第一步:安装所需库和下载数据集

需要注意链接的变化

第二步:导入所需库

import os
import pandas as pd
import xarray as xr
from torch.utils.data import Dataset, DataLoader
import torch.nn as nn
import torch

第三步:数据集路径配置

feature_path = 'E:\\comp3\\earth_baseline\\feature'  # 修改为自己的路径
gt_path = 'E:\\comp3\\earth_baseline\\groundtruth'  # 修改为自己的路径
years = ['2021']
fcst_steps = list(range(1, 73, 1))

第四步:定义数据集类

class Feature:
    def __init__(self):
        self.path = feature_path
        self.years = years
        self.fcst_steps = fcst_steps
        self.features_paths_dict = self.get_features_paths()

    def get_features_paths(self):
        init_time_path_dict = {}
        for year in self.years:
            init_time_dir_year = os.listdir(os.path.join(self.path, year))
            for init_time in sorted(init_time_dir_year):
                init_time_path_dict[pd.to_datetime(init_time)] = os.path.join(self.path, year, init_time)
        return init_time_path_dict

    def get_fts(self, init_time):
        return xr.open_mfdataset(self.features_paths_dict.get(init_time) + '/*').sel(lead_time=self.fcst_steps).isel(time=0)

class GT:
    def __init__(self):
        self.path = gt_path
        self.years = years
        self.fcst_steps = fcst_steps
        self.gt_paths = [os.path.join(self.path, f'{year}.nc') for year in self.years]
        self.gts = xr.open_mfdataset(self.gt_paths)

    def parser_gt_timestamps(self, init_time):
        return [init_time + pd.Timedelta(f'{fcst_step}h') for fcst_step in self.fcst_steps]

    def get_gts(self, init_time):
        timestamps = self.parser_gt_timestamps(init_time)
        try:
            return self.gts.sel(time=timestamps)
        except KeyError as e:
            print(f"KeyError: {e}")
            print(f"Adjusting timestamps for init_time: {init_time}")
            adjusted_timestamps = self.adjust_time(timestamps)
            return self.gts.sel(time=adjusted_timestamps)

    def adjust_time(self, timestamps):
        available_times = self.gts.time.values
        adjusted_timestamps = []
        for ts in timestamps:
            if ts in available_times:
                adjusted_timestamps.append(ts)
            else:
                adjusted_timestamps.append(available_times[-1])
        return adjusted_timestamps

第五步:定义自定义数据集类

class mydataset(Dataset):
    def __init__(self):
        self.ft = Feature()
        self.gt = GT()
        self.features_paths_dict = self.ft.features_paths_dict
        self.init_times = list(self.features_paths_dict.keys())

    def __getitem__(self, index):
        init_time = self.init_times[index]
        try:
            ft_item = self.ft.get_fts(init_time).to_array().isel(variable=0).values
            gt_item = self.gt.get_gts(init_time).to_array().isel(variable=0).values
        except KeyError as e:
            print(e)
            print(f'init_time: {init_time} not found')
            return self.__getitem__((index + 1) % len(self.init_times))
        
        return ft_item, gt_item

    def __len__(self):
        return len(list(self.init_times))

第六步:查看数据集

my_data = mydataset()
print('sample num:', mydataset().__len__())
train_loader = DataLoader(my_data, batch_size=1, shuffle=True)

第七步:定义模型

class Model(nn.Module):
    def __init__(self, num_in_ch, num_out_ch):
        super(Model, self).__init__()
        self.conv1 = nn.Conv2d(num_in_ch, num_out_ch, 3, 1, 1)

    def forward(self, x):
        B, S, C, W, H = tuple(x.shape)
        x = x.reshape(B, -1, W, H)
        out = self.conv1(x)
        out = out.reshape(B, S, W, H)
        return out

in_varibales = 24
in_times = len(fcst_steps)
out_varibales = 1
out_times = len(fcst_steps)
input_size = in_times * in_varibales
output_size = out_times * out_varibales
model = Model(input_size, output_size).cuda()

第八步:定义损失函数

loss_func = nn.MSELoss()

第九步:训练模型

num_epochs = 1
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)

for epoch in range(num_epochs):
    for index, (ft_item, gt_item) in enumerate(train_loader):
        ft_item = ft_item.cuda().float()
        gt_item = gt_item.cuda().float()
        
        # Forward pass
        output_item = model(ft_item)
        loss = loss_func(output_item, gt_item)
        
        # Backward and optimize
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        
        if (index+1) % 10 == 0:
            print(f"Epoch [{epoch+1}/{num_epochs}], Step [{index+1}/{len(train_loader)}], Loss: {loss.item():.4f}")

torch.save(model.state_dict(), 'model_weights.pth')

第十步:模型推理

model.load_state_dict(torch.load('model_weights.pth'))
model.eval()

test_data_path = "test/weather.round1.test"
os.makedirs("./output", exist_ok=True)
for index, test_data_file in enumerate(os.listdir(test_data_path)):
    test_data = torch.load(os.path.join(test_data_path, test_data_file))
    test_data = test_data.cuda().float()
    
    # Forward pass
    output_item = model(test_data)
    
    print(f"Output shape for sample {test_data_file.split('.')[0]}: {output_item.shape}")
    
    output_path = f"output/{test_data_file}"
    torch.save(output_item.cpu(), output_path)

!zip -r output.zip output

改进方向

  1. 数据预处理优化:当前代码在数据加载过程中可能会遇到 KeyError,应增加更好的异常处理机制,避免重复获取失败的数据。

  2. 模型复杂度:当前模型只有一个卷积层,可能无法充分捕捉复杂的气象数据特征。建议尝试增加卷积层或引入其他更复杂的模型结构,如 U-Net 等。

  3. 训练过程监控:增加训练过程的详细日志记录和可视化工具,如 TensorBoard,以便更好地监控和分析训练过程中的模型性能。

  4. 超参数调优:当前训练仅进行了一个 epoch,且学习率固定为 0.001。建议尝试更多的超参数组合,并进行交叉验证,以找到最佳的模型参数配置。

  5. 数据增强:引入数据增强技术,增加训练数据的多样性,以提高模型的泛化能力。

  6. 模型评估:增加更多的评估指标和测试集,以全面评估模型的性能,并在实际应用中进行验证。

  • 7
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值