一、课程引入
通过介绍天气预报、降水预测等场景可以利用数据分析和深度学习实现精准预测,激发学习兴趣,开启本次课程。
二、机器学习与深度学习
- 机器学习
- 定义:人工智能的分支,使计算机利用数据改进性能,无需明确编程。
- 通俗理解:像学生通过教材学习,在考试或实践中取得好成绩。
- 核心思想:通过算法和统计模型,从经验中学习,识别模式,做出预测或决策。
- 分类:监督学习(从标记的训练数据中学习)、无监督学习(处理未标记数据找结构和模式)。
- 任务分类:根据输出是否离散,分为分类与回归。
- 深度学习
- 是机器学习中神经网络算法的进阶版,通过模拟人脑神经元信息传递,层数更深,对大规模数据有更好学习效果。
三、PyTorch 介绍
- 是由 Meta AI(Facebook)开发的基于 Lua 编写的 Torch 库的 Python 实现的深度学习库,广泛应用于学术界和工业界。
- 重要工具类:Dataset(构建数据集)、Dataloader(数据加载)、Model(定义模型)。
- 优势:可自由构建模型和数据集,方便尝试网络模型和优化方法,减少重复编程;对 GPU 硬件支持好,能加速模型训练。
四、降水预测模型