降水预测模型搭建教程笔记task1#AI夏令营 #Datawhale #夏令营

一、课程引入
通过介绍天气预报、降水预测等场景可以利用数据分析和深度学习实现精准预测,激发学习兴趣,开启本次课程。

二、机器学习与深度学习

  1. 机器学习
    • 定义:人工智能的分支,使计算机利用数据改进性能,无需明确编程。
    • 通俗理解:像学生通过教材学习,在考试或实践中取得好成绩。
    • 核心思想:通过算法和统计模型,从经验中学习,识别模式,做出预测或决策。
    • 分类:监督学习(从标记的训练数据中学习)、无监督学习(处理未标记数据找结构和模式)。
    • 任务分类:根据输出是否离散,分为分类与回归。
  2. 深度学习
    • 是机器学习中神经网络算法的进阶版,通过模拟人脑神经元信息传递,层数更深,对大规模数据有更好学习效果。

三、PyTorch 介绍

  1. 是由 Meta AI(Facebook)开发的基于 Lua 编写的 Torch 库的 Python 实现的深度学习库,广泛应用于学术界和工业界。
  2. 重要工具类:Dataset(构建数据集)、Dataloader(数据加载)、Model(定义模型)。
  3. 优势:可自由构建模型和数据集,方便尝试网络模型和优化方法,减少重复编程;对 GPU 硬件支持好,能加速模型训练。

四、降水预测模型

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值